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Abstract. This paper studies algorithms for equilibrium problems with equilibrium constraints
(EPECs). We present a generalization of Scholtes’s regularization scheme for MPECs and extend
his convergence results to this new relaxation method. We propose a sequential nonlinear comple-
mentarity (SNCP) algorithm to solve EPECs and establish the convergence of this algorithm. We
present numerical results comparing the SNCP algorithm and diagonalization (nonlinear Gauss-
Seidel and nonlinear Jacobi) methods on randomly generated EPEC test problems. The compu-
tational experience to date shows that both the SNCP algorithm and the nonlinear Gauss-Seidel
method outperform the nonlinear Jacobi method.

1 Introduction

An Equilibrium Problem with Equilibrium Constraints (EPEC) is a mathematical program
to find an equilibrium point that simultaneously solves several Mathematical Programs with
Equilibrium Constraints (MPECs), each of which is parameterized by decision variables of
other MPECs. The applications of EPECs often arise from noncooperative games, especially
multi-leader-follower games [20], where each leader is solving a Stackelberg game formulated
as an MPEC [14]. Several EPEC models have been developed to study the strategic behavior
of generating firms in deregulated electricity markets [3, 9, 17]. In a companion paper [24], we
investigate a spot-forward equilibrium model arising in the field of supply chain management
and compute a forward market equilibrium formulated as an EPEC.

This paper is organized as follows. In the next section, we review the recent theoretical
studies on MPECs. In Section 3, we propose a generalization of Scholtes’s regularization
scheme and show that the convergence theorems studied in [23] can be extended to our
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approach. Section 4 introduces EPECs and their definitions of stationary concepts. Diag-
onalization methods [2, 3, 9, 11, 17] have been widely used by researchers in engineering
fields to solve EPECs. We briefly discuss the convergence properties of the diagonalization
methods based on an equivalent NLP approach [6] to solve each MPEC subproblem. We
also propose a sequential nonlinear complementarity (SNCP) approach for solving EPECs
and establish the convergence of this algorithm. Section 5 presents numerical results com-
paring diagonalization methods and the SNCP algorithm on randomly generated EPEC test
problems.

A word about the notation: For u € R" and v € R™, (u,v) denotes the column vector
[u™ vT|T € R™™™. If w and v are two vectors in R", then u o v denotes the Hadamard
product, i.e., uov = [uyvy, -, u,v,]T € R, and v L v indicates orthogonality of vectors
u and v. We let e denote the vector of all ones in the appropriate dimension. By || - ||, we
mean the Euclidean norm. If a function f : R™ — R is twice continuously differentiable,
then Vf(x) € R" and V2f(z) € R™*" denote the gradient and the Hessian matrix of f at
x, respectively. If the mapping ¢ is differentiable, then Vg(z) € R™*™ denotes the Jacobian
matrix, in which the i-th row is Vg;(z)T. For a matrix A € R™*" with linearly independent
rows, a basis in A will consist of m linearly independent columns of A which together form
a m X m matrix A.z, where 3 is the set of indices of those m independent columns.

2 Preliminaries on MPECs

We consider an MPEC formulated as a nonlinear program with complementarity constraints:

minimize  f(x)
subject to g(z) <0, h(z)=0, (1)
0<G(z) L Hx) >0,
where f: R" - R, g: R" — RP, h: R" - RY, G: R" — R™,and H : R" — R™ are twice

continuously differentiable functions. Given a feasible vector Z of the MPEC (1), we define
the following index sets of active and inactive constraints:

Zy(z) == {ilgi(z) =0},
Ia(z) = {i|Gi(z) =0},
Zg(z) = {i|Gi(z) > 0},
Tu(®) = {i| Hi(z) = 0}, 2)
I () = {i| Hi(z) > 0},
Ieu(z) = {i|Gi(x) = Hi(z) = 0},



where Zgy () is known as the degenerate set. If Zgy(Z) = 0, then the feasible vector Z is
said to fulfill the strict complementarity conditions.

Associated with any given feasible vector z of MPEC (1), there is a nonlinear program,
called the tightened NLP (TNLP(z)) [19, 22]:

minimize  f(x

—~
8

subject to ¢

Similarly, there is a relazed NLP (RNLP(z)) [19, 22] defined as follows:

minimize f(z)
subject to g¢g(z) <0, h(x)=0,
Gi(r) =0, ieIy(z),
Gi(z) > 0, icTy(a), (4)
Hi(z) =0, ieZ&(z),
Hi(x) >0, i€Zg(T)

It is well known that an MPEC cannot satisfy the standard constraint qualifications, such
as linear independence constraint qualification (LICQ) or Mangasarian-Fromovitz constraint
qualification (MFCQ), at any feasible point [4, 22]. This implies that the classical KKT
theorem on necessary optimality conditions (with the assumption that LICQ or MFCQ is
satisfied at local minimizers) are not appropriate in the context of MPECs. One then needs
to develop suitable variants of CQs and concepts of stationarity for MPECs. Specifically,
the MPEC-CQs are closely related to those of the RNLP (4).

Definition 2.1. The MPEC (1) is said to satisfy the MPEC-LICQ (MPEC-MFCQ) at a
feasible point z if the corresponding RNLP(z) (4) satisfies the LICQ (MFCQ) at z.

In what follows, we define B(ouligand)-stationarity for MPECs. We also summarize
various stationarity concepts for MPECs introduced in Scheel and Scholtes [22].

Definition 2.2. Let Z be a feasible point for the MPEC (1). We say that Z is a Bouligand-
or B-stationary point if d = 0 solves the following linear program with equilibrium constraints



(LPEC) with the vector d € R" being the decision variable:
minimize  Vf(z)d
subject to ¢(z) + Vg(z)'d <0, h(z)+ Vh(z)d =0, (5)
0<G(z)+ VG(x)'d L H(z) + VH(z)d > 0.
B-stationary points are good candidates for local minimizers of the MPEC (1). However,

checking B-stationarity is difficult because it may require checking the optimality of 2/%¢# (@)l
linear programs [14, 22].

Definition 2.3. We define the MPEC Lagrangian with the vector of MPEC multipliers
A= (A9, M NG N as in Scholtes [23]:

L(x, ) = f(z) + (V) g(x) + (\")h(z) = (X) "G (x) = (\T)H (). (6)

Notice that the complementarity constraint G(z)TH (x) = 0 does not appear in the MPEC
Lagrangian function. This special feature distinguishes MPECs from standard nonlinear
programming problems.

The following four concepts of MPEC stationarity, stated in increasing strength, are
introduced in Scheel and Scholtes [22].

Definition 2.4. A feasible point 7 of the MPEC (1) is called weakly stationary if there exists
a vector of MPEC multipliers A = (A7, A", X9, A¥) such that (z, \) is a KKT stationary point
of the TNLP (3), i.e., (%, \) satisfies the following conditions:

V.L(Z,A) = V[(Z) + Vg(z)"A + Vh(Z)"A\" — VG(2)"AC — VH(z)"A\7 =0,

hME)=0; g¢()<0, N>0, (M)7%(@) =0,
i € Ig(T) Gi(z) =0, 7)
i € I(Z) Gi(z) >0, A¢>0, M\Gi(z)=0,
i€ZIy(x) H;(z) =0,
i € 15 (7) Hy(z) >0, M >0 MH(z)=0

In addition, the feasible vector Z is called

(a) a C(larke)-stationary point if \CAH >0 Vi € Tgu (7).

(b) a M(ouduckhovich)-stationary point if either (AF > 0, A > 0) or (AYAF = 0)
Vi€ gy ({Z‘)

(¢) a strongly stationary point if \¢ > 0,\F >0 Vi€ Zgy(2).
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Notice that by Definition 2.4, a point 7 is a strongly stationary point of the MPEC (1) if
(z,A) is a KKT pair of the RNLP (4).

Definition 2.5 Upper-level strict complementarity (ULSC). A weakly stationary
point 7 is said to satisfy ULSC if there exist MPEC multipliers A = (A9, N XG N satisfying
(7) with AGAH £ 0 for all i € Tep(7).

See [22] for a discussion of these various stationarity conditions and their relations to
others in the literature such as Clarke’s generalized stationarity.

The following two theorems relate the strongly stationary point to B-stationary point
and local minimizers of MPECs.

Theorem 2.6 ([22]). If a feasible point Z is a strong stationary point for the MPEC (1),
then it is a B-stationary point. Conversely, if z is B-stationary of the MPEC (1), and if the
MPEC-LICQ holds at z, then it is a strongly stationary point.

Theorem 2.7 ([19, 22]). If the MPEC-LICQ holds at a local minimizer z of the MPEC
(1), then 7 is a strongly stationary point with a unique vector of MPEC multipliers A\ =
(A9, AP NG N,

Fletcher and Leyffer [6] suggest reformulating the MPEC (1) as the following equivalent
nonlinear program:
minimize  f(z)

subject to g(z) <0, h(z) =0,
G(x) >0, H(z) >0,
G(z) o H(x) <0.

An interesting observation by Anitescu [1] and Fletcher et al. [7] on the equivalent nonlinear
program (8) is stated in the following theorem.

(8)

Theorem 2.8 ([1, 7, 13]). A vector Z is a strongly stationary point of the MPEC (1) if and

only if it is a KKT point of nonlinear program (8),Ai.e., there exists a vector of Lagrangian
multipliers A = (A9, A", AG, M AGH) such that (z, \) satisfies the following conditions:

V(@) + Vg(#)"N + Vh(z)"A

~VG(z)T[\Y — H(z) o X¢H] — VH(z)"[\" — G(z) 0 XGH] =0,

h(z)=0; g(z)<0, NM=>0, (A)T(z) =0,

G(z) >0, A¥>0, (A9)'G@) =0,

H(z) >0, M>0, (M)'G) =0

G(@)oH(z) <0, AH >0, (AMTG(z)oH(z)] =0.
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3 A Generalization of Scholtes’s Regularization

In this section, we present a generalization of Scholtes’s regularization scheme [23]. Our
approach suggests relaxing the complementarity constraints and perturbing the coefficients
in the objective function and constraints simultaneously. Hence, Scholtes’s scheme is a special
case of our approach if the objective function and constraints are not perturbed. We show
that the convergence analysis studied in [23] can be extended to our method without any
difficulty. The convergence results of our method will be applied to establish the convergence
of the sequential nonlinear complementarity algorithm in the next section.

For any mapping F : R" x A" — R™, where R" is the space of variables and A is the
space of (fixed) parameters, we denote the mapping as F'(z;a’) with x € R™ and a" € AF.
The order of elements in @’ is mapping specific. For any positive sequence {t} tending to 0,
we perturb the parameters in F and denote the new parameter vector as a’ with a!” — a”’
as t — 0, and af” = a¥” when t = 0. Note that the perturbation on @’ does not require the
perturbed vector al” to be parameterized by t.

Let Q := {f,9,h,G, H} be the collection of all the functions in the MPEC (1). With
the notation defined above, the MPEC (1) is presented as

minimize  f(x;a’)
subject to g(z;a’) <0, h(z;a") =0, (10)
0 < G(x;a%) L H(z;a) >0,
where a* € A%, for all w € Q.
For any positive sequence {t} tending to 0, we perturb every parameter vector a* and

denote the perturbed parameter vector as ay for all w € €2. The perturbed vector ay should
satisfy the following two conditions for all w € Q:

al —a’, ast—0". (11)
a; =a*, whent=0. (12)
As {t} — 0%, we are solving a sequence of perturbed NLPs, denoted by Reg(t):

minimize  f(z;af)

subject to g(z;af) <0, h(x;al) =0,
G(z;af) >0, H(x;a) >0,
G(z;af) o H(x;all) < te.

(13)

In what follows, we extend Theorem 3.1, Theorem 3.3, and Corollary 3.4 in [23] to
our relaxation method. The proof closely follows the one given by Scholtes in [23] and is
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included here for the completeness. We first state two technical lemmas. Lemma 3.1 states
that the NLP-LICQ at a feasible point carries over to all feasible points in a sufficiently small
neighborhood. Lemma 3.2 extends similar results to MPECs.

Lemma 3.1. Consider the nonlinear program
minimize  f(x)
subject to h(x)
g(z)

0, (14)
0,

IN

where f : R* — R', h : R* — R! and g : R* — R™ are twice continuously differen-
tiable functions. If the NLP-LICQ holds at a feasible point z of (14), then there exists a
neighborhood N (Z) such that the NLP-LICQ holds at every feasible point x € N (Z).

Proof. Let A(Z) be the Jacobian matrix of active constraints at z of (14). Since NLP-LICQ
holds at Z, the rows of A(Z) are linearly independent. Then, there exists a basis A.5(Z) in
A(z) and the determinant of A.s(Z), denoted as det(A.5(Z)), is nonzero. Since det(A.5(x))

is a continuous function of x, it follows that there exists a neighborhood N (Z) such that for
all feasible points z of (14) in N (z):

det(A.
1, (m)
Ih(l’)

/—\

z)) # 0,
T

4(Z), (15)
Iy

N 1N

(T
(T

~—r

This further implies that for every such z the gradient vectors of the active constraints in
(14) are linearly independent. Hence, NLP-LICQ holds at every feasible point = € N'(z). O

Given a feasible point Z of Reg(t) (13), we define the following index sets of active

constraints: Z,(z,t) :== {i|gi(z;a) = 0},
In(z,t) == {i|hi(Z;a}) = 0},
Ia(Z,t) = {i| Gi(T;af) = 0}, <16)
Iu(a,t) = {i| Hi(z;a]") =0},
Ton(,t) = {i| Gi(x;al)Hi(z;all) = t}

Lemma 3.2. If the MPEC-LICQ holds at the feasible point z of the MPEC (10), then there
exists a neighborhood N (Z) and a scalar ¢ > 0 such that for every ¢ € (0, ), the NLP-LICQ
holds at every feasible point = € N(Z) of Reg(t) (13).

Proof. This follows from lemma 3.1 and the following relations on the index sets of active



constraints:

Ty(z,t) S Zy(z),
In(z,t) C In(Z),
Te(x, t) UZy(z,t) UZgu(z,t) € Zg(x)UZy(T), (17)
To(z,t) NIy (x,t) = 0,
Ty(z,t) NZagu(x,t) = 0,

which hold for all z in a sufficiently small neighborhood N (Z) and all ¢ € (0, ) for sufficiently
small ¢ > 0.

For every feasible z of (13) in AV (Z), by Lemma 3.1 and (17), the system

Yo MVg(z)+ Y AVg(z)+ > MNVGi(z)+ Y A'VH(2)

1€y (xt) €Ly (x,t) 1€Zq(x,t) 1€y (x,t) (18)
+ > (T Hi(z")VGi(z) + (A Gi(w af ) VHi(x)] = 0
1€Zgm (z,t)
implies that A = A = \¢ = M = A\ G (z;af) = N Hy(x;al’) = 0. Since
Gi(z; ) Hy(w; al') = t,
we have
Gi(z;a¥) >0, Hi(z;a) >0,

and thus, Al = 0. This proves that the NLP-LICQ holds at z. O

Theorem 3.3. Let {t,} be a sequence of positive scalars tending to zero as v — oo, and let
x, be a stationary point of Reg(t,) converging to . Suppose the MPEC-LICQ holds at z.
Then

(i) The point z is a C-stationary point of the MPEC (1).

(ii) If, for each v, the point x, also satisfies second-order necessary optimality conditions
for Reg(t,), then z is an M-stationary point of the MPEC (1).

(iii) Moreover, if the ULSC assumption holds at z, then Z is a B-stationary point of the
MPEC (1).

Proof. First, by (11) and (12), it is easy to see that Z is a feasible point of the MPEC (1).
Let A, = (AJ, A NG NE AGH) be the vector of Lagrangian multipliers of Reg(t,) (13) at the

v v v v 14

stationary point x,, and let
Ty ={i|i € Zgu(x,,t,) for infinitely many v}.
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Since MPEC-LICQ holds at z, the multiplier vector A, is unique in the following KKT
system of Reg(t,) (13) for sufficiently small ¢,

Vf(z,;al)+ Vg(z,;al )N + Vh(z,; ay ) TR

—VG(zy;af )N — VH(z,;afl )TN

+VG(zy;al )T [H (zy;af') o X§H] + VH (2,5 0 )T[G(zy; 0l ) 0 AFH] =
h(zyiap) =

glry:al) <0, 3 > 0, gz, af A =

G(zy;a7) <0, XS >0, G(z,;a0 )TN =

H(z,;a') <0, M >0, H(:L’l,,at VENH

Gz, ay ) o H(x,;afl) —t, e <0, AGH

[G(zyiaf)) o H(zwiap) —t, e] AT

A\

o o o o o o o

(i) Define S\ZG,/ = —/\fVHH (zv;a;"), and )\H = =X Gi(xy;af), for i@ € Tap(w,,t,) and
rewrite the first equation in (19) as

—Vf(x,/;ai:) = Z )‘ v!]z fzxaat + Z )‘h Vh; (.T,,,at)
1€Ty(x) €T (z0)

= MNoVGi(wial) = > MLVH(z,;af)
iGIG(xuaty) 1€Ly (I‘u tu)

- XM

€2 (2wt )NIE(

— > A, [VGi(xy; al’) +

1€Zgn (2v,ty)NLE (Z)

<
=
=
N
o
N
_|_

3])
=

— Z {)\G VGi(zy; aG) + /N\Z{IVVHZ'(JUV; ag)} )
i1€Zan (zu,tv)NZa(Z)NIH (Z)

For every sufficient large v, we construct a matrix A(z,) with rows being the transpose



of the following vectors:

Voi(zy;ai), i€Z,(x),

Vhi(z,;al), i€ Iy(z),
~VGi(w,;a5), i €Za(@)\ (Zon(z,,t,) N TH(T)),
Hi(zy;a)h)
Gi(zy;af})
—VH;(z,;al!), 1 €ZIy(x)\ Zeu(z,,t,) NIE(T)),

—VGi(zy,; atGy) — VH(xy; ag), i € Iou(xy,,t,) NZI4(Z),

Gi(zy; ag)

—VH;(z,; afj) — 7}['@ all)

VGi(z,; atGy), i €Ip()\ Zeu(xy,t,) NIE(T)).

Then (20) can be represented as an enlarged system of equations A(x,)'y, = —Vf(z,)
with some components in y, set to 0. The matrix A(x,) converges to the matrix A(z) with
linearly independent rows

Vai(z;a9), 1€ Zy(z),
Vhi(z;a"), i € T(2),
VGi(z;a%), i€ Ig(T),
VH(z;a"), ieIy(T).

It follows that 3, converges to a unique vector, A = (A9, \* A& \H) with

lim A, = X >0, lim A, = Al
i¢ Ty lim AF, = A >0, lim A, = A >0, (21)
i€Zy: — lim N Hi(2a) = A <0, — lim AN Gi(z5a]) = A<

This completes the proof of (i).

(ii) Suppose Z is not an M-stationary point of the MPEC (1). Then there exists an index
J € Zgu(Z) such that

— lim /\-GHH»(x,,;ag) = 5\? <0, — lim AGHGj(my;ag) = S\f <0.

v—oo IV T v—oo IV

From (i), this further implies that j € Zy and G;(z,; af’ ) H;(z,; af’) = t, for every sufficiently
large v.

For every v, we construct a matrix B(z,) with rows being the transpose of the following
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vectors

Vai(z,;al), 1€ Zy(z),
Vhi(xy;ailu), i € In(x),
VGi(z,;a), i €Ig(),
VH,;(xl,,ag), i € Iy(T).

Since the MPEC-LICQ holds at z, it follows that the rows in the matrix B(x,) are lin-
early independent for every sufficiently large v. Consequently, the following system has no
solutions for v large enough:

B(z,)%, =0, z,#0. (22)

By Gale’s theorem of alternatives (page 34 in [15]), the following system has a solution d,
for every sufficiently large v:

Vgi(zy,;al)'d, = 0, i € Z,(z),
Vhi(x,; a?V)Td,, = 0, i € Iy(z),
VGi(z,;a)'d, = 0,  i€Zg(T),i# 7,
VH;(zy;al)'d, = 0, i € ZIy(x),1+# 7,
VGj(xl,;atGu)TdV = 1,
. H
ety - o)
and we represent the system as
B(z,)d, =b,. (23)

Similarly, the following system has a solution d:

Vgi(z;a9)d = 0, i € T,(z),
Vhi(z;a")d = 0, i€ Ty(2),
VGi(z;a%)d = 0, i € Ig(Z), i # 7,
VH;(z;a")%d = 0, i € Ig(T), 1 # 7,
VG,(z;a9)Td = 1,
VH;(z;a%)% = —\9/\H,



and we represent the system as o
B(z)d ="b. (24)

Below, we construct a bounded sequence {d, } converging to d. Without loss of generality,
we can assume that there exists an index set 3 such that B.z(Z) is a basis in B(Z) and B.(z,)
is a basis in B(z,) for every sufficient large v. Furthermore, the vector d is a basic solution
of (24) associated with the basis B.s(z) with ds satisfying

B.g(ﬂ_})dg =b
and the rest of the components in d being 0.

Similarly, for every sufficiently large v, the vector d, is a basic solution of (23) associated
with the basis B.g(z,) with (d, ) satisfying

B.g(z,)(dy)s = by
and the rest of the components in d, being 0.

From (21), it is clear that H;(z,;a!’)/G;(zy;af’) — A9/A and hence, b, — b as
v — 0o. With B(z,) converging to B(%), it follows that the sequence {d,} is bounded and
d, — dasv — oco.

It is easy to see that d, is a critical direction of Reg(t,) (13) at x, for v large enough.
If the constraint G;(z;af )H;(z;afl) < t, is active at z,, we examine the term associated
with this constraint in the Lagrangian function of Reg(t,) for the second-order necessary
optimality conditions. In particular,

NG ALV (Gy(wys aff ) Hy (i afl) = t,) d,
= N H (2, a)") d)V2Gj(2y5af)) dy + NS Gj(2y5af)) dY VP H (2,017 ) dy,

2

— )\GHH (Q;V’at )W
J vy v

While the first two terms in the above equation are bounded, the third term

2
—)\»GEH'(ZL‘V; aH)i
pv v Gj(xw atci)

— —00, as v — 090,

since A Hj(x,;aff) — —X; > 0 and Gj(x,;af) — 07. It is easy to check that all other
terms in dF V2L (z,,\,)d, are bounded, and hence, the second-order necessary optimality
condition of Reg(t,) (13) fails at x, for sufficiently large v.

(ili) Since, from (ii), Z is an M-stationary point and the ULSC holds at z, it follows that
is a strongly stationary point, and hence, a B-stationary point. O
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4 Equilibrium Problems with Equilibrium Constraints

4.1 Formulation and stationarity conditions

An EPEC is a problem of finding an equilibrium point that solves several MPECs simulta-
neously. Since practical applications of EPEC models often arise from multi-leader-follower
game settings, we consider the EPEC consisting of MPECs with shared decision variables and
shared equilibrium constraints. In particular, we assume the EPEC consists of K MPECs,
and for each k = 1,..., K, the k-th MPEC has the following form with independent decision
variables ¥ € R™ and shared decision variables y € R™:

minimize  f*(z*, y; 77F)
subject to ¢*(z%,y;27%) <0, AF (R, y;27F) =0, (25)
0 < G(aF,y;27%) L H(2%, y;27%) >0,

where 7% = (2/)f, \ 2%, and f*: R* — R, ¢* : R* — RP*, h* : R* — R%, G : R* — R™
and H : R® — R™ are twice continuously differentiable functions in both z = (z*)£_ | and
y, with n = Zf:o n,. The notation 27% means that =% € R"~™ "0 is not a variable but a
fixed vector. This implies that we can view the above MPEC, denoted by MPEC(z7*), as
being parameterized by z7%. Given 7%, we assume the solution set of the k-th MPEC is
nonempty and denote it by SOL(MPEC(Z7%)). Notice that in the above formulation, each

MPEC shares the same equilibrium constraints, represented by the complementarity system

0<G(z,y) L H(z,y) = 0.

The EPEC, associated with K MPECs defined as above, is to find a Nash equilibrium
(z*,y*) € R"™ such that

(", y*) € SOL(MPEC(z ™)) Vk=1,...,K. (26)

In a recent paper, Mordukhovich [16] studies the necessary optimality conditions of
EPECs via multiobjective optimization. Following Hu [11], we define stationary conditions
for EPECs by applying those for MPECs.

Definition 4.1. We call a vector (z*,y*) a B-stationary (strongly stationary, M-stationary,
C-stationary, weakly stationary) point of the EPEC (26) if for each k = 1,..., K, (z**,y)
is a B-stationary (strongly stationary, M-stationary, C-stationary, weakly stationary) point
for the MPEC(z~%*).

Theorem 4.2. Let (z*,y*) be a (possibly local) equilibrium point of the EPEC (26). If for
each k = 1,..., K, the MPEC-LICQ holds at (z**,y*) for MPEC(z~**) (25), then (z*,y*)
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is an EPEC strongly stationary point. In particular, there exist vectors \* = (A ... \K*)
with A% = (A9 k= \hke \Gokse NH ke \GH k) guch that (2%, y*, A*) solves the system

Vo P, 5 8) + Vg (0 s R TN VB, s TN
VG kg FYNGE L H (kg o) TN B
+VunG(a*, y o) [H (2%, y; 27") 0 AT

+VarH (2", g 27) T [G(a?, y; 275) 0 AHHE] =0
U, FE kg ) + Vg (kg ) DO E - VR (2, g ) TR A
LV, G2,y PGV H (2, g o) IV
+V,G(aF, y; a7 H (2%, y; 27F) o NCHH]

+V, H (2% y; 27T [G (2", y; 27F) 0 NGHE] =0

0> gh(ak,y;a7%) L Nk >0,

0<G* y;27%) L NGk >0,

0< H(zF y;27%) L NF>0,
0< —G(a* y;a7*) o H(z" y;27") L X“HF >0,

k=1,... K.

Conversely, if (z*, y*, \*) is a solution of the above system (27), then (z*, y*) is a B-stationary
point of the EPEC(26).

Proof. Since (z*,y*) is a (possibly local) equilibrium point of the EPEC (26), it follows that
for each k = 1,..., K, the point (z**,4*) is a (local) minimizer of the MPEC(z~**) (25). By
applying Theorem 2.7 and Theorem 2.8 to the MPEC(x~%*) (25) for k = 1,..., K, we can
show that there exists a vector \¥* = (A9 F* \hks \Gikx \H ks \GH k) gych that (2%, i, \F)
satisfies the conditions in the system (27) for each k = 1,..., K. Let \* = (A!*,... \E*),
Then, the vector (z*, y*, \*) is a solution of the system (27). Conversely, by Theorem 2.8, it
is easy to check that for each k = 1,..., K, the vector (z**, y*) is a strongly stationary point,
and hence, B-stationary point (by Theorem 2.6) for the MPEC(z~%*) (25). As a result, the
vector (z*,y*) is a B-stationary point of the EPEC (26). O
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4.2 Algorithms for Solving EPECs

To date, algorithms specifically designed for solving EPECs have not been developed in the
literature. The approaches used by researchers in engineering fields to solve EPECs fall
into the category of Diagonalization methods [2, 3, 9, 11, 17], which mainly rely on NLP
solvers, or more appropriately, MPEC algorithms to solve one MPEC at a time and cyclicly
repeat the same procedure for every MPEC until an equilibrium point is found. In the re-
mainder of this section, we first describe two types of diagonalization methods: nonlinear
Jacobi and nonlinear Gauss-Seidel, and briefly discuss the convergence of the diagonaliza-
tion methods. We then present a new method called sequential nonlinear complementarity
(SNCP) algorithm for solving EPECs. This new method is based on simultaneously relaxing
the complementarity constraints in each MPEC, and solves EPECs by solving a sequence
of nonlinear complementarity problems. We also establish the convergence of the SNCP
algorithm.

Diagonalization methods

Diagonalization methods [5, 18] were originally proposed to solve variational inequality prob-
lems. In [8], Harker applied a diagonalization (or nonlinear Jacobi) algorithm, to find a solu-
tion to a variational inequality formulation of the Nash equilibrium problem in an oligopolistic
market.

Because of their conceptual simplicity and ease of implementation, diagonalization meth-
ods using NLP solvers have been natural choices for engineers and applied economists to solve
EPEC models [2, 3] arising in deregulated electricity markets. In [9] and [17], MPEC algo-
rithms (penalty interior point algorithm in the former reference and smoothing algorithm in
the latter) are used in diagonalization methods to solve EPEC models. Below, we describe
two diagonalization methods: nonlinear Jacobi and nonlinear Gauss-Seidel. The framework
of the diagonalization methods presented here follows the one given in Hu [11].

The nonlinear Jacobi method for the EPEC (26) is described as follows:

Step 0. Initialization. We are given a starting point (z(®,3®) = (25© . 2K ©) 400,
the maximum number of outer iterations J, and an accuracy tolerance € > 0.

Step 1. Loop over every MPEC. Suppose the current iteration point of (z,v) is (z(%), y()).
For each k = 1,..., K, the MPEC(77%()) is solved (using NLP solvers or MPEC
algorithms) while fixing 27%0) = (g8 k=100 gh+L.0G) 4K () Denote
z-part of the optimal solution of MPEC(z~*) by x® (7+1),

Step 2. Check convergence. Let (x(7TV) = (20 G+D 2K G+H)Y If j < J, then increase
j by one and repeat (Step 1.). Otherwise, stop and check the accuracy tolerance:
if ||o* G+ — 2k )| < ¢ for k = 1,..., K, then accept and report the solution

(7, y”) ; otherwise, output “No equilibrium point found” .
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Note that the nonlinear Jacobi method does not use the most recently available informa-
tion when computlng 2P (71 For example, (9 is used in the calculation of z2 (U1 even
though the vector, 251 is known. If we revise the nonlinear Jacobi method so that we
always use the new information, then we have another diagonalization method, the Gauss—
Seidel method. Hence, the framework of the nonlinear Gauss—Seidel method for the EPEC
(26) is the same as nonlinear Jacobi, except that in Step 1., we have

j_k"ﬂ(‘j) — (1,1,(]-{-1)’ . ’xk_L (]+1)7 xk'i'lv(])’ . ’xKﬂ(]))
The multi-firm algorithm proposed in [9] belongs to this category.

To solve each MPEC in Step 1 of diagonalization methods, one can solve the equivalent
NLP (8) suggested by Fletcher and Leyffer [6] using off-the-shelf NLP solvers. For each
k=1,...,K, the equivalent NLP formulation of MPEC(z~%)) is

minimize  f*(z ,y;“k’(”)

SUbjeCt to gk( kaya )> < 07
hk ka ) 2 = 07
(o, 5789) (28)
Gz ’“,y Ry >0,
Hst g 750) > 0,
G(fck,y;f"“’(j’)off(x sy TR0y <.

We denote the above equivalent NLP of the k-th MPEC by NLP*(z=%0)).

The following theorem states the convergence of diagonalization methods based on solv-
ing equivalent NLPs.

Theorem 4.3. Let {(z1),4))} be a sequence of solutions generated by a diagonalization
(nonlinear Jacobi or nonlinear Gauss-Seidel) method, in which each MPEC is reformulated
and solved as an equivalent NLP (28). Suppose the sequence {(z(), )} converges to
(z*,y*) as j — oo. If, for each k = 1,..., K, the MPEC-LICQ holds at (z%*,y*) for
MPEC(z~%*), then (z*,y*) is B-stationary for the EPEC (26).

Proof. From Theorem 2.6 applied to the MPEC(z~**) for each k = 1,..., K, the point
(x%*, y*) is a B-stationary point, and hence, the point (z*,y*) is a B-stationary point for the
EPEC (26). 0

Sequential NCP method

We propose a new method for solving EPECs. Instead of solving an EPEC by cyclicly using
an MPEC-based approach, our approach simultaneously relaxes the complementarity system
in each MPEC(z7%) to

G(a*,y;27%) >0, H(z" y;27%) >0,
G(a* y;27%) o H(a", y; 27F) < te,
16
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and finds an equilibrium solution (z*(t),y*(t)) = (z™(t), ..., 25*(t),y*(t)) of the following

regularized NLPs, denoted as Reg®(z7%; ¢

minimize  f*(zF, y; 77F)
subject to  g*(z*,y;27%) < 0, (A9 F)
Wty 7)) =0, (A™F)
Gt s > 0 oy (k=LK (30)
H(zk y;27%) > 0, (A R)
G(z* y;27%) o H(z%, y;27%) < te, (NCGH.R)

where, given 27%*(t) as the input parameter, (z**(¢),y*(t)) is a stationary point of the k-th
regularized NLP, Reg® (=% (t);t).

Let £F(2* y, A*; t) denote the Lagrangian function for the Reg®(z7%;¢). If (x*(t),y*(t)) is
an equilibrium solution of (30) and LICQ holds at (z*(t),y*(t)) for each Reg”(z~**(t);t), k =
1,..., K, then (z*(t),y*(t)) is a solution of the following mixed nonlinear complementarity
problem, obtained by combining the first-order KKT system of each Reg"(z=%*(¢);¢) in (30):

YV, LE (% y, A t) = 0

Wt (@, y; 7)) =0,

0> gh(a® g2 %) L Nk >0, k=1,... K. (31)
0< Gk, y;27%) L \&F >0,
0< H(a2F y;27%) L M:F>0,

0<te—G(2* y;27%) o H(zk y;27%) L NHE >,

For convenience, we denote the above system by NCP(¢).

While Scholtes’s regularized scheme for MPECs can be described as solving an MPEC
by solving a sequence of nonlinear programs (NLPs), our method is to solve an EPEC by
solving a sequence of nonlinear complementarity problems (NCPs).

The following theorem states the convergence of the sequential NCP algorithm.

Theorem 4.4. Let {t,} be a sequence of positive scalars tending to zero, and let (x,,y,)
be a sequence of solutions to NCP(¢,) (31) converging to (z*,y*) as t, — 0. Furthermore,
for each k = 1,..., K and for every v, the point (z¥,v,) satisfies the second-order optimality
conditions of RegF(x,*;t,). If, for each k = 1,..., K, the MPEC-LICQ and the ULSC hold
at (zF* y*) for MPEC(2™**), then (z*,y*) is B-stationary for the EPEC (26).
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Proof. For each k = 1,..., K, the point (2%, y,) satisfies the second-order optimality con-
dition of Reg*(z,*;t,):
minimize  f*(z*, y; 2 %)
subject to g*(z*,y; 2, %) <0,
W,y 2, %) = 0,
G2, y;2,")
H(z*, y;2,%) >
G2 y;a,%) o H(ab yr2,%) <tye,

v

0,
0,

and as t, — 0%, we have 2% — 7% and (2% ,v,) — (2,9*). Since the MPEC-LICQ
and the ULSC hold at (z*,y*) for MPEC(Z~*), by Theorem 3.3, the point (x** y*) is B-
stationary for each k£ = 1,..., K. It follows that (z*,y*) is a B-stationary point for the
EPEC (26). 0

5 Implementation and Numerical Comparison

We have implemented the diagonalization methods and the sequential NCP algorithm on
randomly generated EPEC test problems with known solutions. In this set of test problems,
each EPEC consists of two MPECs in the following form:

2k TP’“ 2k

Yy Yy

subject to Gkzk + HFy +a* <0,
% >0,

+ ()Tt + () Ty

N

mmlmlze(xk’y)

K
0<y L Nfzb4+ Y N'ai+ My+q>0.
i=1,i#k

where PF ¢ Rwtm)x(mutm) ok o pre gk ¢ gm Gk € RUxm HE ¢ RUxm gk ¢ Rk NF ¢
R™ ™ M e R™™ and q € R™.

For diagonalization methods, each MPEC is reformulated as an equivalent nonlinear
program (8) and solved with TOMLAB-SNOPT [10]. For the SNCP method, one can solve
the complementarity system NCP(¢) (31) as a set of constraints in an optimization problem
with a constant objective function such as 0. However, such a naive implementation will
result in numerical instabilities when ¢ is small, because the set of the Lagrange multipliers is
unbounded for each MPEC. To stabilize the SNCP method, we minimize the sum of the com-
ponents in A and use TOMLAB-SNOPT to solve the sequence of optimization problems
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with t = 1,107, ...,1071%:

Table 5.1 summarizes the parameters used to generate the EPEC test problems. For the

minimize T\

subject to NCP(?) (31).

(33)

definition of these input parameters for each MPEC, see [12].

Table 5.3 gives the random seeds used to generate each test problem and the objective
function values of MPECs at generated solutions for each test problem. Numerical results for
the methods SNCP, nonlinear Gauss-Seidel (with ¢ = 1.0e—6), and nonlinear Jacobi (with
e = 1.0e—6) on generated test problems are shown in Tables 5.4 — 5.6. To investigate the
impact of the accuracy tolerance € on the performance of diagonalization methods, we ran
the nonlinear Gauss-Seidel and nonlinear Jacobi methods on the same test problems with
lower tolerance ¢ = 1.0e—4, and give the numerical results in Table 5.7 — 5.8. The notation

TABLE 5.1. Input parameters
(n1,m2) | (8, 10) || (first_degl, first deg2) | (1, 1)
m 15 second_deg 3
(I1,l2) | (8,8) || (mix_degl, mix deg2) | (1, 1)

used in these tables is explained in Table 5.2.

TABLE 5.2. Notation used for numerical results

Prob

Problem number.

random_seed

The random seed used to generate each EPEC problem.

Time

Total time (in seconds) needed by the termination of algorithms.

Out Iter # of outer iterations required by diagonalization methods.
Mayj Iter # of major iterations.
f1* The objective function value of MPECT at the found solution (z'*,y*).
f2* The objective function value of MPEC2 at the found solution (z%*,y*).
flyen The objective function value of MPEC1 at the generated solution (:E;en, Ygen)-
2gen The objective function value of MPEC2 at the generated solution (zgen, Ygen)-
Norm The 2-norm of the difference vector between the found solution (z'*, 2%*, y*)
and the generated solution ()., 2., Ygen)-
flagl flagl = 0 if the algorithm finds an equilibrium point;
flagl = 1 if the algorithm is terminated by reaching the iteration limit;
flagl = 2 if the SNCP is terminated by the infeasibility message.
flag2 flag2 = 0 if cycling behavior is not observed for diagonalization methods;

flag2 = 1 if cycling behavior is observed for diagonalization methods.
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TABLE 5.3. Information on test problems

Prob random_seed flyen 24en
1 2.0e+5 —23.4844 22.8737
2 3.0e+5 —9.7748 —10.7219
3 4.0e+5 —16.7669  —4.6330
4 5.0e+5 —9.6054  —0.8600
5 6.0e+5 —46.9213 —11.1220
6 7.0e+5 —1.8838 —6.1389
7 8.0e+5 —14.9793 —12.1478
8 9.0e+5 —5.7299 —19.3843
9 1.0e+6 7.0672 —19.1931

10 1.1e+6 —3.23556 —17.3311

TABLE 5.4. Numerical results for SNCP method (Major Iteration limit = 120)

Prob Maj Iter Time f1* 2% Norm flagl
1 120 127.9 —23.4844 22.8739  2.70e—4 1
2 75 69.0 —9.7749 -10.7219 7.06e—5 0
3 45 48.4 —16.7669 —4.6330 6.48e—5 0
4 68 73.1  —9.6052 —0.8600 1.57e—3 0
5 80 72.9 —46.9213 —11.1220 4.70e—13 0
6 120 83.9 —1.8839 —6.1393 1.15e—3 1
7 75 71.8 —14.9790 —12.1477 4.03e—4 0
8 120 126.7 —5.7300 —19.3844 1.08¢e—4 1
9 54 52.6 7.0672 —19.1930 1.68¢—4 0

10 72 68.0 —3.2363 —17.3301  2.04e—3 0

TABLE 5.5. Numerical results for nonlinear Gauss-Seidel method (J = 30, ¢ = 1.0e—6)

Prob Out Iter Maj Iter Time f1* f2* Norm  flagl flag2
1 30 619 96.3 —23.4844 22.8737 1.23e—4 1 0
2 26 821 114.8 —9.7805 —10.7263 6.25e¢—3 0 0
3 30 903 133.7 —16.7672 —4.6327 6.06e—4 1 0
4 19 1340 232.3 —9.6044 —0.8601 4.67e—3 0 0
5 7 118 17.8 —46.9213 —11.1221 1.02e—4 0 0
6 30 508 73.8 —1.7661 —6.1783 1.18e—1 1 0
7 11 1076 191.0 —14.9807 —12.1489 1.80e—3 0 0
8 30 320 61.8 —5.7228 —19.3929 1.00e—2 1 0
9 9 189 29.4 7.0672 —19.1930 7.24e—5 0 0

10 15 170 30.6 —3.2265 —17.3179 1.50e—2 0 0
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TABLE 5.6. Numerical results for nonlinear Jacobi method (J = 30, £ = 1.0e—6)

Prob Out Iter Maj Iter Time f1* f2*  Norm flagl flag2
1 30 695 104.8 —23.4844 22.8738 1.25e—4 1 0
2 30 1036 138.2  —9.7756 —10.7262 4.34e—3 1 1
3 30 807 104.6 —16.7668 —4.6327 4.24e—4 1 1
4 30 703 946 —9.6031 —0.8601 6.21e—3 1 1
5 30 375 69.2 —46.9213 —11.1221 6.06e—5 1 1
6 30 819 103.6 —1.8837 —6.1672 3.91e—2 1 1
7 30 667 94.0 —14.9790 -—12.1494 2.30e—3 1 1
8 30 847 108.2  —5.7314 —19.3929 6.85e—3 1 1
9 30 624 97.6 7.0672 —19.1930 5.56e—5 1 1

10 30 766 98.7 —3.2819 —17.3179 4.76e—2 1 1

TABLE 5.7. Numerical results for nonlinear Gauss-Seidel method (J = 30, ¢ = 1.0e—4)

Prob Out Iter Maj Iter Time f1* 2 Norm  flagl flag2
1 5 134 179 —23.4844 22.8738 1.25e—4 0 0
2 4 152 24.5 —9.7805 —10.7263 6.24e—3 0 0
3 5 149 19.1 —16.7672 —4.6327 6.68¢e—4 0 0
4 6 149 20.2 —-9.6044 —0.8601 4.71e—3 0 0
5 5 100 14.4 —46.9213 —11.1220 1.02e—4 0 0
6 30 508 73.8 —1.7661 —6.1783 1.15e—1 1 0
7 6 130 18.0 —14.9807 —12.1489 1.80e—3 0 0
8 17 299 47.0 —5.7228 —19.3929 1.00e—2 0 0
9 7 187 27.3 7.0672 —19.1930 7.42e—5 0 0

10 7 149 20.8 —3.2265 —17.3179 1.49e—2 0 0

TABLE 5.8. Numerical results for nonlinear Jacobi method (J = 30, € = 1.0e—4)

Prob Out Iter Maj Iter Time f1* 2 Norm  flagl flag2
1 10 257 36.8 —23.4844 22.8738 1.26e—4 0 0
2 30 1036 138.2  —9.7756 —10.7262 4.34e—3 1 1
3 30 807 104.6 —16.7668 —4.6327 4.24e—4 1 1
4 30 703 946 —9.6054 —0.8600 6.21e—3 1 1
5 8 155 23.6 —46.9213 —11.1220 6.14e—5 0 0
6 30 819 103.6 —1.8837 —6.1672 3.91e—2 1 1
7 30 667 94.0 —14.9790 —-12.1494 2.30e—3 1 1
8 30 847 108.2  —5.7314 —19.3929 6.85e—3 1 1
9 30 624 97.6 7.0672 —19.1930 5.56e—5 1 1

10 30 766 98.7 —3.2819 —17.3179 4.76e—2 1 1

From the numerical results, we have the following observations.

e The SNCP algorithm solves 7 test problems and is terminated for reaching the major
iteration limit for 3 test problems. However, the vectors returned by SNCP method
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for those three test problems are close to the generated solutions with “Norm” of order
1.0e—4. It takes around one second to perform one major iteration. The number of
major iterations for each of the 7 solved problem is consistently between 40 and 80.

With € = 1.0e—6, the nonlinear Gauss-Seidel method solves 7 test problems and is
terminated for reaching the outer iteration limit for 4 test problems. However, with
¢ = 1.0e—4, the nonlinear Gauss-Seidel succeed in solving 9 test problems within at
most 7 outer iterations. In fact, we observe that the nonlinear Gauss-Seidel method
only needs a few (4 or 5) outer iterations to reach an accuracy of 1.0e—3 or 1.0e—4,
and then makes slow progress to achieve higher accuracy of 1.0e—5 or 1.0e—6. Note
that the cycling behavior is not observed for the nonlinear Gauss-Seidel method on
any test problem.

The results in Table 5.6 show that for each test problem, the nonlinear Jacobi method is
terminated for reaching the outer iteration limit, although the solution vector returned
by nonlinear Jacobi method is close to the generated solution. Surprisingly, the cycling
behavior is observed for 9 out of the 10 problems. This confirms that when cycling
occurs, the diagonalization method would fail. Even with lower accuracy (¢ = 1.0e—4),
nonlinear Jacobi method solves only two test problems. This observation suggests that
the nonlinear Jacobi method has difficulty achieving high accuracy and is less reliable.

The comparison of “Norm” for the SNCP algorithm and the nonlinear Gauss-Seidel
method seems to suggest that the SNCP algorithm is able to reach the generated
solution (x;m,xf]en,ygen) more accurately than the nonlinear Gauss-Seidel method.
The fact that all these methods return a solution close to the generated solution
(Zgens Toens Ygen) Seems to indicate that the generated solution is isolated or locally

unique. Further investigation of the properties of the generated solutions is needed.

With the accuracy tolerance € = 1.0e—6, it is difficult to say which method, SNCP
or nonlinear Gauss-Seidel, is more efficient. However, it is clear that both methods
outperform the nonlinear Jacobi method. If a user is willing to accept lower accuracy,
e.g., ¢ = 1.0e—2 or ¢ = 1.0e—4, the nonlinear Gauss-Seidel method can be very efficient.

Conclusions

We have proposed a new relaxation method for MPECs, which can be considered a gen-
eralization of Scholtes’s regularization scheme. We have extended the convergence results
for Scholtes’s to our method. We also proposed a new sequential NCP approach for solving
EPECs and established the convergence of this method. We presented numerical results for
diagonalization methods and sequential nonlinear complementarity algorithms on randomly
generated EPEC test problems. The results suggested that the cycling behavior is observed
frequently for the nonlinear Jacobi method, which has the worst performance. The SNCP
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algorithm consistently performs well in reaching solutions accurately, whereas the nonlinear
Gauss-Seidel method can be very efficient if low accuracy is adequate.
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