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Abstract
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1 Introduction

Linear filters are ubiquitous in applied macroeconomic research, ranging from sim-

ple differencing operations, mechanical detrending devices, seasonal adjustment to

ARIMA models. Many of these filters have very long and often infinite impulse

response sequences, such that some approximation procedure is necessary for finite

samples. This paper shows that the time-series properties of the data play an impor-

tant role in such finite sample approximations.

Two different schools of thought stand out in the existing literature on filtering of

economic time-series. Members of the first group define a statistical model, usually

consisting of a trend component, a cyclical component and noise, which the underlying

economic time-series is assumed to follow. The optimal Wiener filter is then the

signal extracting device, which minimizes the mean squared error to the actual data

generating process. Examples for filters based on such statistical models are the

exponential smoothing filter used by Lucas (1980), the Hodrick-Prescott filter (1997)

and more recently the Butterworth filter known from electrical engineering (Pollock,

1999 and 2000). It is important to note that these filters are based on a hypothetical

data generating process of infinite length, such that the properties of the filters have to

interpreted in an asymptotic context, as opposed to their finite sample counterparts.

Members of the second school assume the existence of an ideal filter, often charac-

terized in terms of its frequency domain representation (transfer function), which is

then used as a benchmark for finite sample approximations. The Kolmogorov-Wiener

filter is defined as the finite sample filter, which minimizes the mean-squared error

to the ideal filter. Often the ideal filter is assumed to be an ideal bandpass filter
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with a square-wave transfer function, an assumption that is implicit in the work of

Baxter and King (1999), Christiano and Fitzgerald (1999) and Pedersen (2001) and,

to a certain extent, in Guay and St-Amant (1995) and Pollock (2000). Pedersen, for

example, constructs a metric which is essentially a numerical approximation to the

L2 distance of a filter to the ideal bandpass filter. The choice of the ideal bandpass

filter as a reference model is justified on grounds of the Burns and Mitchell (1946)

taxonomy, which classifies business cycles as components with cycles between 8 and

32 quarters.

The approach in this paper lies in the neutral ground shared by both schools of

thought mentioned above. It is agnostic, in the sense that no statements are made

about why a certain filter (either based on an underlying statistical model or the shape

of its transfer function) should be preferred over another. Instead it is assumed that

the ideal filter is known and the focus is shifted towards an optimal approximation

for a finite sample of data that is possibly serially correlated and nonstationary.

The methodology used is similar in spirit to the work by Christiano and Fitzgerald

(1999) on approximations to the ideal bandpass filter. It is shown that an extended

framework applies to a wide class of commonly used filters with a linear impulse

response representation. Besides the ideal bandpass filter, examples discussed in this

paper include the Hodrick-Prescott filter and the Butterworth digital filter.

The analysis in this paper is based on Hilbert space methodology familiar from time-

series econometrics. Optimal use of limited information corresponds to projecting the

possibly infinite convolution product of the ideal filter onto a finite subspace, which

is spanned by the data sample. The fundamentals of the theory of prediction and
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interpolation of time-series were developed independently by Kolmogorov (1941) and

Wiener (1949). While Kolmogorov’s analysis was based on the time domain, Wiener

used frequency domain methods. Accordingly, the optimization problem for the fi-

nite sample approximation can be stated both in the time- and the frequency domain.

The latter approach is appealing from an intuitive point of view, since the spectral

density of the underlying time-series effectively serves as a weighing function for the

accuracy of the finite sample approximation. For negatively autocorrelated processes

with strong mean reversion, the focus is shifted to the high frequency components,

while for integrated time-series accuracy is most important at the lowest frequen-

cies. The results are summarized for stationary time-series in proposition 1 and for

nonstationary time-series in propositions 2 to 4. A consequence is that the same

filter can produce varying results when applied to different time series. Cogley and

Nason (1995) discuss this phenomenon in the case of the Hodrick-Prescott filter. A

custom-tailored approach of filter-design is therefore desirable to achieve comparable

and consistent results.

Section 2 of the paper discusses the underlying theoretical framework of optimal filters

for finite time series and proposes solutions for a range of commonly used time-series

models as well as directions of how to implement them. Section 3 applies the method-

ology to three commonly used filters, the bandpass filter, the Hodrick-Prescott filter

and the Butterworth filter. A comparison is made with previous solution approaches.

Section 4 compares how different implementations affect the performance of filters at

the end of the sample. Section 5 concludes.
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2 Finite filters and time series

This section introduces the basic problem of optimal finite sample approximation and

subsequently proposes solutions for stationary and integrated time series.

2.1 The filtering problem in the time and frequency domain

Let us assume that we are interested in the linear transformation

yt = B(L)xt

=
∞∑

j=−∞

Bjxt+j, (1)

where {Bj}∞j=−∞ is the impulse response sequence of some ideal linear filter. In finite

samples this transformation is not feasible, in general, and it is necessary to use an

alternative filter with finite impulse sequence {B̂t,j}n2
j=−n1

,

ŷt = B̂t(L)xt

=

n2∑
j=−n1

B̂t,jxt+j. (2)

This finite sample filter does not have to be neither symmetric (i.e. B̂t,j = B̂t,−j)

nor time-invariant (i.e. B̂t,j = B̂j). The only restrictions we need to impose is

that for a sample with T observations, n1 < t and n1 + n2 + 1 ≡ N ≤ T . Let

J = −n1, ..., n2 denote the index set (or information set) of B̂t, then the restriction

claims that J ⊕ t ⊂ {1, ..., T}. In other words, yt is a linear combination of a subset

of {xt}T
t=1 such that yt ∈ sp({xj}J⊕t). In the line of Kolmogorov (1941) and Wiener

(1949) we are looking for a sequence {B̂t,j} that minimizes the mean squared error
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between yt and ŷt,

{B̂t,j} = argmin E[yt − ŷt]
2. (3)

To restate the problem more accurately, assume that {xt} is the realization of a

stochastic process {Xt}, defined on the real probability space L2(Ω,F , P ) with finite

inner product

E(XY ) = 〈X,Y 〉 =

∫
Ω

X(ω̄)Y (ω̄)dP (ω̄) <∞. (4)

Then

{B̂t,j} = argmin

∫
Ω

[
yt(B,X(ω̄))− ŷt(B̂t, X(ω̄))

]2
dP (ω̄). (5)

This definition is inconvenient to work with and matters become more tractable when

the problem is transformed into the frequency domain L2([−π, π],B, µ) using the iso-

morphic mapping IXt = eit (the Fourier transform)1. The Fourier transform has the

opportune property that convolution in the time domain becomes simple multipli-

cation in the frequency domain, such that we can reexpress equations (1) and (2)

as

y(ω) = B(ω)x(ω), ω ∈ [−π, π] (6)

and

ŷ(ω) = B̂(ω)x(ω), ω ∈ [−π, π], (7)

1The frequency domain is defined on the interval [−π, π] and its corresponding Borel σ-field. µ

is the uniform probability measure dµ(ω) = 1
2π dω that normalizes the inner product

〈IX, IY 〉 =
1
2π

∫ π

−π

X(ω)Ȳ (ω)dω.

The Fourier transform is the pair of mappings

f(ω) =
∞∑
−∞

fje
iωj (analysis equation)

fj =
1
2π

∫ π

−π

f(ω)e−iωjdω (synthesis equation) .
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where B(ω) and B̂(ω) are the transfer functions of the filters B and B̂. The transfer

function provides an useful tool to model a filter’s performance in the frequency

domain, and is usually written in polar form as

H(ω) = Γ(ω)eiθ(ω).

Γ(ω) = |(H(ω)| is the filter’s gain function and determines how the amplitude of

a time series is increased or diminished at frequency ω. θ(ω) = arg(H(ω)) is the

filter’s phase function and determines how cycles at frequency ω are shifted forward

or backward in time. Taking squared norms in (6) we see that the squared gain

function gives a direct relation between the spectral densities fy(ω) and fx(ω):

fy(ω) = ‖y(ω)‖2 = |B(ω)|2‖x(ω)‖2 = |B(ω)|2fx(ω) (8)

Using the properties of isomorphisms (see for example Brockwell and Davis (1991))

we can write

E[yt − ŷt]
2 = ‖yt − ŷt‖2

= ‖I(yt − ŷt)‖2 = ‖Iyt − Iŷt‖2 = ‖y(ω)− ŷ(ω)‖2

= ‖[B(ω)− B̂(ω)]x(ω)‖2

=
1

2π

∫ π

−π

∣∣∣B(ω)− B̂(ω)
∣∣∣2 fx(ω)dω. (9)

Equation (9) provides an alternative and intuitive interpretation to the mean squared

error minimization problem. In the frequency domain the optimal filter minimizes

(the square of) the L2 norm of the difference between the transfer functions, weighed

by the spectral density of the underlying time series.
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2.2 Stationary interdependence

In this section we are concerned with stochastic processes {Xt} that are stationary

in the sense that

EXt = µ,

E(Xt − µ)2 = γ0 <∞,

E(Xt − µ)(Xt−k − µ) = E(Xs − µ)(Xs−k − µ) = γk for all t, s ∈ Z.

We will further assume that limk→∞ γk = 0, such that {Xt} is the class of all stationary

ARMA models

φ(L)Xt = c1 + θ(L)εt, ε ∼ WN, (10)

with Wold representation

Xt = c2 +
θ(L)

φ(L)
εt = c2 + ψ(L)εt. (11)

The optimization problem

{B̂j} = argmin
1

2π

∫ π

−π

∣∣∣B(ω)− B̂(ω)
∣∣∣2 fx(ω)dω (12)

can be viewed as a projection of B(ω)fx(ω) onto the subspace MB̂ = sp{eiωj, j ∈ J}

of L2([−π, π]). The frequency domain itself is spanned by the set of all Fourier basis

functions {eiωj, j ∈ Z}, which form an orthonormal basis. In the absence of serial

correlation the spectrum is flat and the optimal finite sample filter is just a Dirichlet

window of the ideal filter (B̂j = Bj, j ∈ J). In this case simple truncation provides

the best approximation of the ideal filter in a finite sample. If, on the other hand,

γk 6= 0 for some k ≤ Q ∈ N and γk = 0 for k > Q, consider the spectrum defined as
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the Fourier transform (Wiener, 1930 and Khintchine, 1934)

fx(ω) =

Q∑
k=−Q

γke
iωk. (13)

If the coefficients of B are square summable, the integral in (12) is guaranteed to be

finite, since

1

2π

∫ π

−π

∣∣∣B(ω)− B̂(ω)
∣∣∣2 fx(ω)dω ≤ 1

2π

∫ π

−π

|B(ω)|2 fx(ω)dω ≤ sup
ω
fx(ω)

∞∑
−∞

B2
j ,

(the spectrum is finite because of stationarity). When B(ω) is multiplied by the spec-

trum, its Fourier coefficients are effectively remixed to account for serial correlation,

such that the optimal final sample approximation becomes a linear combination of the

ideal filter sequence, weighed by the autocovariance function. The exact definition of

the optimal finite sample filter is given in the following proposition.

Proposition 1 (Stationary Interdependence)

Let {Xt} be a stationary process with autocovariance function γk and γk = 0 for

k > Q. Then its optimal finite sample filter sequence B̂ = [B̂−n1 , ..., B̂n2 ]
′ (with

respect to a square-summable ideal filter) is given by2

B̂ = Γ̂−1ΓB, (14)

where Γ̂ is an (N)× (N) (Toeplitz) matrix with typical element

Γ̂m,n = γ|m−n|, (15)

2In practice direct matrix inversion can be avoided in the solution of (14), since Γ̂ is a band-
diagonal Toeplitz matrix, which can be factored by Cholesky decomposition (see Pollock 1999, p.
608).
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Γ is an (N)× (N + 2Q)-matrix with typical element3

Γm,n = γ|m+Q−n|, (16)

and B = [B−n1−Q, ..., Bn2+Q]′ is a column vector of coefficients of the ideal filter.

Proof : Appendix A.

2.3 Integrated processes

It is widely accepted that the assumption of stationarity applies to the growth rate

rather than the level of most macroeconomic and many financial variables. Often

these series are characterized by Granger’s (1966) typical spectrum shape, with most

of the power concentrated in the low frequencies. These observations lead to the

family of ARIMA models, of which the pure random walk

(1− L)Xt = εt, εt ∼ WN(0, σ2), (17)

with spectral density

fx(ω) =
σ2

|1− eiω|2
, (18)

is a canonical example. Compared to the stationary case, the analysis is complicated

by the fact that the random walk has infinite variance, such that an additional re-

striction has to be imposed on the optimal filter in order to remain in the familiar L2

space. As Christiano and Fitzgerald (1999) show for the ideal bandpass filter, this

restriction removes the double pole at zero frequency in the spectrum of the random

walk. This is equivalent to first integrating the approximate and ideal filter sequences,

3For the case when Q = ∞, ΓBj represents the infinite sums
∑∞

k=−∞ γ|k−j|Bk, (j =
−n1, ..., n2).
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taking first order conditions and then taking first differences again. The result has

a strikingly simple form: All optimal finite sample filter coefficients are identical to

their ideal filter counterparts, except the first and last element, which are equal to the

sum of the (truncated) lower and upper tail of the ideal filter sequence, respectively:

B̂j = Bj for j = −n1 + 1, ..., n2 − 1,

B̂−n1 =
∑−n1

k=−∞Bk, B̂n2 =
∑∞

k=n2
Bk. (19)

Proposition 2 (Integration)

If {Xt} follows a random walk

∆Xt = εt, εt ∼ WN(0, σ2),

and the optimal filter {Bj}∞j=−∞ satisfies the conditions

(i)
∑0

j=−∞ |
∑j

k=−∞Bk|2 <∞, and

(ii)
∑∞

j=1 |
∑∞

k=j+1Bk|2 <∞,

the optimal finite sample filter approximation B̂ = [B̂−n1 , ..., B̂n2 ]
′ is given by

B̂ =

[
D

ι

]−1 [
C

β

]
(20)

where D is an (N − 1)×N matrix whose first N − 1 columns and rows constitute a

lower triangular matrix filled with ones and zero entries in the last column, ι is an

1 × N-vector of ones, C is the N − 1 column vector C = [C−n1 , ..., Cn2−1]
′, whose

elements are given by Cj =
∑j

k=−∞Bk and β =
∑∞

j=−∞Bj.

Proof : Appendix B.
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In general closed form solutions for the infinite sums in proposition 2 are not avail-

able, with the important exception of symmetric (even) and anti-symmetric (odd)

filters. Fortunately, the filters that are most widely used in economic research and

in particular the filters discussed subsequently in section 3 (the Hodrick-Prescott

filter, approximate bandpass filters and the Butterworth filter) are symmetric and

have optimal finite sample approximations with closed form matrix representations,

as described in the following proposition.

Proposition 3 (Integration and Symmetric Filters)

If {Xt} follows a random walk and the ideal filter B has an even impulse response

sequence (Bj = B−j), the optimal finite sample filter approximation can be computed

as

B̂ =

[
D

ι

]−1 [
MB + β

2
τ

β

]
(21)

where M is the (N − 1)×N matrix defined as

M =

 0
n1×1

M1
n1×n1

0
n1×n2

0
n2×n1

M2
n2×n2

0
n2×1


where M1 is an upper triangular matrix, filled with −1

2
in the last column and −1 in

all other columns. M2 is a lower triangular matrix, filled with 1
2

in the first column

and 1 in all other columns. τ is an (N − 1) × 1 vector of ones and B̂ and B are

N-vectors of the filter coefficients.

Proof : Appendix C.
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For symmetric filters with high-pass properties (β = 0) the filter coefficients are given

by the following simple expression:

B̂j = Bj for j = −n1 + 1, ..., n2 − 1,

B̂−n1 = B0

2
−
∑n1−1

0 Bj, B̂n2 = B0

2
−
∑n2−1

0 Bj. (22)

By combining the results of propositions 1 and 2 the analysis can be extended to the

class of ARIMA models

φ(L)∆Xt = c1 + θ(L)εt, ε ∼ WN, (23)

whose stationary component has a Wold representation

∆Xt = c2 +
θ(L)

φ(L)
εt = c2 + ψ(L)εt. (24)

Proposition 4 (ARIMA models)

If {Xt} is an integrated process with a stationary component with autocovariance

function γk (γk = 0 for k > Q), its optimal finite sample approximation is given by

B̂ =

[
Γ̂D

ι

]−1 [
ΓC

β

]
(25)

where Γ̂ and Γ are (N−1)×(N−1) and (N−1)×(N−1+2Q) variations of the matrices

introduced in proposition 1 and C is the N − 1 + 2Q-vector [C−n1−Q, ..., Cn2−1+Q]′

variation of the integrated coefficients vector from proposition 2.

In the special case where B is symmetric, the optimal finite sample filter can be

computed as

B̂ =

[
Γ̂D

ι

]−1 [
Γ(MB + β

2
τ)

β

]
(26)

13



where D and M are (N − 1) × N and (N − 1 + 2Q) × (N + 2Q) variations of the

matrices from proposition 3. M is modified as

M =

 0
(n1+Q)×1

M1
(n1+Q)×(n1+Q)

0
(n1+Q)×(n2+Q)

0
(n2+Q)×(n1+Q)

M2
(n2+Q)×(n2+Q)

0
(n2+Q)×1

 .
ι is an N-vector filled with ones, τ is an (N − 1 + 2Q)-vector whose first Q+N − 1

entries equal 1 and the last Q entries equal −1, and B is the N + 2Q-vector

[B−n1−Q, ..., Bn2+Q]′.

Proof : Combining the proofs of propositions 2 and 3.

2.4 Implementation of the optimal filter

In practice the construction of the optimal filter consists of two separate problems, the

estimation of the time-series properties of the filtered signal and the construction of

the corresponding optimal finite impulse response sequences discussed in the previous

sections.

The first step involves determining whether the time-series is stationary or contains

an integrated trend component. If the series is stationary, the autocovariance func-

tion can be computed either by directly estimating the second sample moments, or

by fitting an ARMA model and computing the autocovariance function analytically.

If the time series includes an autoregressive component, the autocovariance function

dies out at a geometric rate and some cutoff value has to be taken. This truncation

is unlikely to seriously affect the accuracy of the filter unless the time-series is nearly

integrated, in which case the assumption of a random walk may be a better approxi-

mation. If the time series follows an ARIMA model, the optimal solution is based on
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the autocovariance function of the first differences of the series, which, again, can be

estimated directly from the data, or by first fitting a parametric model.

For the second problem it is necessary to compute the coefficients of the filter’s im-

pulse response function. This is not always straightforward since many filters are

described by their frequency response function B(e−iω) rather than by their time

domain representation. Examples include the bandpass filter, the Hodrick-Prescott

filter and the Butterworth filter, which are discussed in the following section. In this

case the filter coefficients can be computed via the inverse Fourier transform

Bj =
1

2π

∫ π

−π

B(e−iω)eiωjdω. (27)

In the case of the bandpass filter the analytical solution is straightforward, however

in the case of the Hodrick-Prescott filter and the Butterworth filter it involves infinite

sums, such that numerical integration is the preferred method of computation.

Another issue arises if the ideal filter has an infinite impulse response function that

is neither symmetric nor anti-symmetric and the underlying signal is integrated. In

this case the infinite sums of the optimal solution as in equation (19) have to be

approximated by finite sums. In terms of the overall performance the accuracy of

these partial sums is likely to be less important than the rule that all coefficients sum

up to zero. A heuristic approach is then to first compute coefficients B̃j and then

subtract the N -th fraction of their sum

B̂j = B̃j −
1

N

n2∑
k=−n1

B̃k. (28)

This method is used, for example, by Baxter and King (1999) for approximate band-

pass filters for integrated time-series.

15



3 Three commonly used filters

This section gives examples of optimal finite sample approximations for three differ-

ent filter models. The first two, the ideal bandpass filter and the Hodrick-Prescott

filter have been used widely in applied economic research. The third, the digital

Butterworth filter, is well known in electrical engineering and audio-acoustic research

and has been recently proposed by Pollock (1999 and 2000) as a detrending device

for economic time-series.

3.1 Approximate bandpass filters

Bandpass filters are a standard tool in digital signal processing. For an ideal bandpass

filter the transfer function equals a square wave, it is set equal to one for frequencies

within the passband (the interval (a, b]) and equal to zero for all other frequencies

(the stopband),

B(e−iω) =

{
1, if |ω| ∈ (a, b]

0, otherwise.
(29)

The impulse response coefficients of the ideal lowpass filter can be found by applying

the inverse Fourier transform to the transfer function B(e−iω)

B0 =
b− a

π

Bj =
sin (bj)− sin (aj)

πj
. (30)

Two observations can be made at this point: First, since the sine function is an odd

function, the impulse response function of an ideal bandpass filter is symmetric about

the origin, therefore the phase effect is zero over the entire frequency band. Second,

the sequence of filter coefficients extends indefinitely in both directions. Therefore,
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in praxis only approximations to the ideal bandpass filter are possible. The simplest

approach is to truncate the infinite ideal filter sequence with the Dirichlet kernel.

The resulting finite sample filter has a transfer function that is a finite Fourier series

approximation to the ideal square wave function. A prominent feature of such a

finite sample transfer function is a series of oscillations around the transition from

stopband to passband, which is referred to as the Gibbs (1899) effect in the engineering

literature.

It is easy to verify, that the Dirichlet window provides the optimal finite sample

approximation in the case of serially uncorrelated time-series. For example, Baxter

and King (1999) recommend a time-invariant symmetric Dirichlet window of 25

coefficients for quarterly, and a Dirichlet window of 7 coefficients for yearly stationary

macroeconomic data. For integrated data Baxter and King construct an alternative

filter by subtracting the mean from the Dirichlet window such that B̂(1) = 0 (highpass

condition). Christiano and Fitzgerald (1998) show that the optimal approximation

for integrated time-series is given by proposition 3 rather than the filter proposed by

Baxter and King

B̂j = Bj for j = −n1 + 1, ..., n2 − 1,

B̂−n1 = B0

2
−
∑n1−1

0 Bj, B̂n2 = B0

2
−
∑n2−1

0 Bj. (31)

They further advocate the use of larger windows and question the necessity to restrict

oneself to symmetric zero phase filters. In fact they show that the Kolmogorov-Wiener

approximation always makes use of the full sample, even at the beginning and the

end of the time-series, and suggest that the phase effect of asymmetric filters is less

serious than previously assumed.
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The following example illustrates how an optimal finite sample approximation can be

constructed for a process with strong mean reversion.

Example 1: ARMA(1,1): Consider the following ARMA(1,1) process

(1 + 0.9L)xt = (1− 0.3L)εt εt ∼ WN(0, 1).

As is shown in the first graph of figure (1), almost all of the spectral mass is con-

centrated at the highest frequencies. This is an example for which the Dirichlet

approximation of the stationary Baxter-King filter as well as the I(1) filter recom-

mended by Christiano and Fitzgerald does not work well, since the autocorrelation is

strongly negative. Accordingly the optimal filter (second row, left) minimizes leakage

close to ±π, but shows relatively little concern about discrepancies at the low fre-

quencies. In this example the filter-length is chosen to as 3 on each side (n1 = n2 = 3)

and the pass-band is between π/6 and π/2. Numerical integration over the squared

leakage, weighted by spectral density (≡ effective leakage), indicates that the penalty

function (squared difference of L2-norm) is almost two times lower for the optimal

filter than for the standard iid -filter. To obtain the optimal filter, first calculate the

Wold representation (ψ0 = 1, ψ1 = θ + φ = −1.2, ψk = ψ1φ
(k−1), k = 1, 2, ..., where

φ = −0.9 and θ = −0.3). The autocovariance function is then given by

γk =

{
1 +

∑∞
j=0 ψ

2
1φ

2j k = 1,

ψ1φ
k−1 +

∑∞
j=0 ψ

2
1φ

2j+k k > 1.

Using γk it is straightforward to construct the matrices Γ and Γ̂ from proposition

1. The autoregressive component of the model has infinite memory, but decays at a

geometric rate. Setting the cutoff parameter Q to 100 accounts for all components

that are larger than 10−4.
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Example 2: I(1) process: If the underlying process is integrated of order 1, its

spectrum approaches infinity at the origin, hence an optimal filter concentrates all ac-

curacy towards the lowest frequencies. Figure (2) compares the performance of an iid

filter (Dirichlet approximation) with the optimal filter from proposition 2 (Christiano-

Fitzgerald filter). Because the transfer function of the iid filter does not equal zero

at the origin, the criterion of the minimization problem (12) becomes infinity. An

important observation of figure (2) is that even the relatively small leakage of the op-

timal filter becomes large in the proximity of the origin when it is multiplied by the

spectrum. As a result, the filter generates cycles that lie outside the desired bandpass,

an effect that is amply discussed in Cogley and Nason (1995a), Guay and St-Amant

(1996) and Pedersen (2001). The only remedy against this problem is to use a fil-

ter window, which is as large as possible, which is what Christiano and Fitzgerald

propose.

Figure 3 compares the Dirichlet truncation and the optimal filter when applied to

a sample of 29 observations, with a random walk as the underlying data generating

process, a frequent scenario in applied macroeconomic research. In the middle of the

sample the transfer functions of both filters are similar and exhibit the Gibbs effect,

which is typical for truncated bandpass filters. However, the small amount of leakage

of the Dirichlet filter near the zero frequency is greatly amplified by the singularity of

the spectral density of the random walk. Note also, that the phase effect is zero4. At

the end of the sample the transfer functions of the two filters differ considerably, at

first sight both the gain function and especially the transfer function of the optimal

filter are inferior to that of the Dirichlet filter. The superior performance becomes

4The jumps of size π in the phase spectrum are due to the fact that the transfer function is
negative, but the gain function is defined as a positive real function.

19



clear only when the squared deviation of the transfer function is weighted by the

spectral density of the random walk.

3.2 The Hodrick-Prescott filter

The Hodrick-Prescott filter is a linear time-invariant symmetric filter with the infinite

moving average representation

HP (L) =
λ(1− L)2(1− L−1)2

λ(1− L)2(1− L−1)2 + 1
, (32)

It also acts as a high-pass filter, since the transfer function equals zero at zero fre-

quency and approaches unity at π radians. The parameter λ simultaneously deter-

mines the cutoff frequency and the rate of transition of the gain function. Since it has

4 zeros at zero frequency the HP filter renders series that are integrated up to order

4 stationary (King and Rebelo 1993). However, since the denominator also includes

the terms λ(1− L)2(1− L−1)2, these differences are partly undone, so that more low

frequency components are still passed through than for example for the first difference

filter. The Hodrick-Prescott filter can be viewed as a special case of the family of

smoothing splines developed by Reinsch (1976), in the sense that it is the asymptotic

solution (as T → ∞) to the following optimization problem, which minimizes the

squared deviations of a time series from its trend subject to a smoothness constraint

min
{st}T

s=1

T∑
t=1

(yt − st)
2 + λ

T−1∑
t=2

[(st+1 − st)− (st − st−1)]
2. (33)

The first order conditions for this problem comprise a system of T variables in T

unknowns, and the cyclical component ct can be recovered as

c = (IT −M−1)y, (34)
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where c and y are T -vectors, IT is a T−identity matrix and M is a Toeplitz matrix with

diagonal band [λ,−4λ, 1+6λ,−4λ, λ], initial and end conditions M11 = MTT = 1+λ,

M22 = MT−1,T−1 = 1 + 5λ and M12 = M21 = MT,T−1 = MT−1,T = −2λ and zeros

elsewhere.

The transfer function of the HP filter has a smooth transition from the stopband

to the passband. An important consequence of this gradual ascend is that a con-

siderably large portion of low frequency components is passed through the highpass

filter, a phenomenon that is especially pronounced when the underlying data series

is integrated. In this case the HP filter generates strong cycles that lie to the left of

the desired passband, similarly to case of approximate bandpass filters. This issue is

well-known, see for example Cogley and Nason (1995), Guay and St-Amant (1996)

and Pedersen (2001) for a detailed discussion.

A question that has received little attention so far is whether it is meaningful to

compare, like Pederson does, the performance of the asymptotic HP filter to the ideal

bandpass filter. If the ideal bandpass filter serves as the benchmark, the optimal

approximation falls into the class of filters discussed in the previous section (3.1).

In this section we therefore assume instead that the asymptotic HP filter, as de-

scribed in equation (32) is the benchmark and emphasize the fact that the standard

implementation using equation (34) is not the best finite sample approximation.

As an example, consider figure (4), where the HP filter is applied to a random walk

with 29 observations. The coefficients of the optimal finite sample filter are obtained

by the methodology described in section (2.4). The raw coefficients Bj are found by
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numerical integration of the inverse Fourier transform5

Bj =
1

2π

∫ π

−π

4λ[1− cos(ω)]2

4λ[1− cos(ω)]2 + 1
eiωjdω. (35)

The optimal finite sample filter is then implemented according to the rules of propo-

sitions (2) and (3). In the middle of the sample both the standard filter as well as

the optimal filter approximate the ideal filter very well. Since both filters are sym-

metric, there is no phase shift. However, at the end of the sample the standard HP

approximation exaggerates the gain and experiences a large phase shift (up to π ra-

dians) at low frequencies. In contrast the optimal finite sample filter underestimates

the gain, but has a phase shift that is only half the size of that of the standard HP

implementation.

3.3 The Butterworth filter

Recently6, Pollock (2000) and Trimbur and Harvey (2001) propose the use of a digital

Butterworth filter as an approximation to a square wave filter to detrend economic

time-series. The Butterworth filter, which is familiar in electrical engineering and

audio-acoustic signal processing, is characterized by a gain function that is maximally

flat (in the sense of the best Taylor approximation) in the passband and monotone

between pass- and stopbands. This monotonicity comes at the price of a decrease

in steepness in the transfer function, as compared to other classic IIR filters or the

approximate bandpass filter discussed in section 3.1.

5This problem is well suited for numerical integration, since the integrand is a smooth function.
At larger sample sizes Simpson’s rule quadrature produced artifacts at higher coefficients, a problem
which was avoided by switching to a higher order method such as adaptive Lobatto quadrature.

6An earlier application of the Butterworth filter for detrending economic time series can be found
in Stock and Watson (1990).
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The digital version of the Butterworth highpass filter is described by the rational

polynomial expression (the filter’s z-transform)

ψH(z) =
λ(1− z)n(1− z−1)n

(1 + z)n(1 + z−1)n + λ(1− z)n(1− z−1)n
. (36)

Its time-domain representation (impulse response sequence) can be obtained by sub-

stituting z for the lag-operator L, while substituting z for e−iω gives the frequency-

response function. The parameter n is referred to as the order of the filter and

determines the steepness of the ascend between the stopband and the passband. The

parameter λ determines the cutoff frequency ωc such that for the highpass filter de-

scribed above

λ =

[
1

tan ωc

2

]2n

, (37)

ψH(e−iω)|n→∞ =

{
1, if ω > ωc

0, otherwise.
(38)

Therefore, while the Butterworth filter shares some similarities with the Hodrick-

Prescott filter (monotonicity and flatness), it is more flexible due the fact that the

passband and steepness are controlled by two different parameters (for the HP filter

both properties are controlled by λ). The order of the filter also equals the number

of poles and zeros of the Laurent series represented by equation (36). The filter is

stable as long as the poles remain inside the complex unit disk, however, increasing

n moves the modulus of the poles closer to one. An increase in steepness of ascend

therefore comes at the price of a decrease in stability.

Due to the recursive nature of the Butterworth filter problems arise for short and

nonstationary data series. The main difficulty is to provide plausible initial and

end conditions. A common approach is to extend the sample by forecasting and
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backcasting, however a bad choice of starting values can affect the entire sample (a

problem known as the ’transient effect’).

Pollock derives a specialized finite-sample version of the Butterworth filter on the basis

of signal extraction theory. This approach is optimal if the data is consistent with

the statistical model upon which the filter is based. The model under consideration

is given by

yt = st + ct

=
(1 + L)n

(1− L)d
νt + (1− L)n−dεt, νt ∼ N(0, σ2

ν), εt ∼ N(0, σ2
ε ),

where st is the trend component extracted by the Butterworth lowpass filter and ct

is the cyclical component extracted by the Butterworth highpass filter. For a sample

with N observations, the approximation is then given by7

ĉ = (−1)dλΣQ(ΩL + λΩH)−1Q′y, (39)

where Σ is an N × N Toeplitz matrix generated by (1 − z)n−d(1 − z−1)n−d, ΩL

and ΩH are (N − d) × (N − d) Toeplitz matrices generated by (1 + z)n(1 + z−1)n

and (1 − z)n(1 − z−1)n, respectively, and Q is an N × (N − d) matrix with the

coefficients of the polynomial (1− L)d in the elements with index (j, k), j = 1, ..., N

and k = j, ..., j + d. Q effectively operates as a d-fold differencing device.

However, as Pollock (1999, p. 607) notes, filters are usually selected not for their

conformity with a specific data generating process, but rather with a view to their

7The actual solution described in Pollock (2000) is

ĉ = λΣQ(ΩL + λΩH)−1Q′y,

and does not include the factor (−1)d.
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frequency-response characteristics. In accordance with the methodology discussed in

section 2.4 the optimal finite sample filter for a random walk model is constructed by

first computing the raw coefficients via numerical integration of the inverse Fourier

transform and then applying the rules from propositions 2 and 3.

Figure 5 compares the performance of the filter implied by equation (39) (Pollock)

and the Kolmogorov-Wiener approximation of the Butterworth filter (I(1) filter) for

an integrated process with sample size 29. The parameters are n = 8, ωc = 3π
8

, and

d = 1 (since the process is assumed to be I(1). It is remarkable that both filters

provide an almost perfect approximation to the asymptotic filter in the middle of

the sample. This may be explained by the fact that the filter coefficients of the

asymptotic filter die out fairly quickly. However, at the end of the sample, the filter,

as implemented by Pollock, shows a rather strong deviation from its ideal transfer

function, both in terms of the gain function as well as the phase shift.

4 Application: End of sample filters for current

analysis

In the previous section it was demonstrated that finite sample approximations of

some well-known infinite impulse response (IIR) filters provide a good fit in terms

of frequency response performance in the middle of the sample, but show sizable

discrepancies towards the beginning and the end of the sample. It was also shown that

these discrepancies can be mitigated to a significant extent by using the mean-squared

error minimizing formulas introduced in section 2. A question that arises naturally

is how these facts affect the performance of mechanical end-of-sample filters, which
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have been frequently used by central banks and other research institutions for current

analysis purposes. This issue has been recently addressed by van Norden (2002), who

uses an instance of the optimal bandpass filter, discussed in section 3.1, such that the

end-of-sample estimate of the filtered component yT is given by

ŷT =
0∑

j=−(T−1)

B̂jxT+j. (40)

{B̂j}0
j=−(T−1) minimizes

E[yT − ŷT |{xt}∞t=−∞]2, (41)

where yT is the output of a hypothetical ideal square-wave filter. In this section we

compare the end-of-sample performance of the three filters discussed in the previous

section (Bandpass filter, Hodrick-Prescott filter and Butterworth filter). The data

sample used is the logarithm of quarterly real U.S. GDP from 1946:1 to 2000:1 made

available electronically by the Federal Reserve Bank of St. Louis (shown in figure 6).

The sample of 220 observations was then truncated on each side by 50 observations,

to allow for a startup sequence for the end-of-sample filters and the construction of

a two sided mid-sample filter with a window-size of 101 observations that serves as

a benchmark. In the previous section it was shown that for all three filters under

consideration a symmetric truncation provides a very good fit when the sample size

is 29, hence in this case the mid-sample filter may be regarded as a very close approx-

imation to the asymptotic filter. The past information for the end-of-sample filters

starts with a back-lag of 50 observations in 1958:3 and increases to 170 observations

in 1987:3.

For the bandpass filter the passband is set for the interval [ π
16
, π

3
), which coincides with

the Burns-Mitchell (1946) taxonomy of business cycles with a wavelength between 8
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and 32 quarters. The smoothing parameter of the Hodrick-Prescott filter is set to the

usual value of λ = 1600. Finally, the cutoff frequency of the Butterworth filter is set

to ωc = π
16

to allow a comparison with the approximate bandpass filter and the order,

which determines the steepness of the ascend between stopband and passband, is set

to n = 8.

It is widely agreed among economists that GDP is described by a difference station-

ary data generating process (see for example the seminal work of Nelson and Plosser,

1982). For simplicity we assume that a simple random walk with a drift is a good ap-

proximation, so that GDP follows a pure random walk after removing a constant and

the time trend. Therefore the optimal end-of-sample filter is constructed by applying

the rules from propositions 2 and 3 to the infinite impulse response sequences of the

ideal filters. This procedure is consistent with the findings of Christiano and Fitzger-

ald (1999) who show that accounting for the random walk component outweighs the

importance of adjustments for serial correlation in the stationary component.

In figure 7 the optimal end-of-sample filters are compared to their standard finite

sample counterparts (Dirichlet-truncation for the bandpass filter, the solution to the

minimization problem (33) for the HP filter and Pollock’s (2000) model based imple-

mentation for the Butterworth filter) as well as the benchmark set by the mid-sample

filter. With the exception of Pollock’s finite sample implementation of the Butter-

worth filter, all cyclical components are qualitatively similar and have downturns that

coincide with NBER-type recessions. Summary statistics of the filtered series, shown

in table 1, are consistent with the transfer-function comparisons of the previous sec-

tion. In particular, the output of the optimal bandpass filter is relatively close to the

one of the standard implementation, but has lower variance since fewer low frequency
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components are passed through. For the HP filter the gain of the optimal filter is

only half of that of the ideal filter and the standard implementation, which translates

into a lower variance of the filtered series. The main benefit of the optimal filter in

this case is the fact that the phase effect is cut by half at the low frequencies. The

biggest difference between the end-of-sample filters occurs in the case of the Butter-

worth filter, where the finite sample filter as implemented by Pollock has an artificial

peak in its gain function around π
3

gradients (see figure 5), with the consequence that

the filtered series contains a considerable proportion of artificial low-frequency com-

ponents and its variance is seven times larger than that of the series generated by the

mid-sample filter. The poor performance of Pollock’s finite sample implementation

of the Butterworth filter may be partly a result that for low cutoff frequencies the

expression ΩL + λΩH in equation (39) becomes nearly singular. This leads to inac-

curate numerical results. An interesting observation is that the correlation between

the optimal filter and the mid-sample filter σom is larger than the correlation between

the standard filter and the mid-sample filter σsm in the cases of the HP filter and the

Butterworth filter, but not for the bandpass filter. It can be confirmed, however, that

the optimal filter dominates the standard filter in terms of the mean squared error

criterion, by constructing the statistics

Ij ≡
1

T − 1

T∑
t=1

(yj,t − ym,j)
2 (42)

and

Rj ≡
Ij
σ2

m

. (43)

Is and Io are the mean squared deviations of the series generated by the standard

and optimal filter, respectively, from the series generated by the mid-sample filter.

Rs and Ro are standardized by the variance of the mid-sample series. A comparison
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of these statistics indicates that there are small, but noticeable improvements in the

cases of the bandpass filter and the Hodrick-Prescott filter and a very large gain in

accuracy in the case of the Butterworth filter.

A resampling method, based on the recursive bootstrap (see e.g. Freedman and Pe-

ters, 1984) is used to draw inference on the sample statistics. As opposed to the

moving block bootstrap developed by Künsch (1989) and the stationary bootstrap

proposed by Politis and Romano (1994), the recursive bootstrap approaches the prob-

lem of dependence in the data by fitting a parametric time series model. For the U.S.

output data an ARIMA(1,1,0) model was found to effectively pre-whiten the data8

and the residuals were then used to generate the bootstrap resamples in a recursive

way. The bootstrap statistics indicate that the confidence intervals of the sample

statistics (correlation and squared deviation from the ideal filter) are large. However,

the confidence intervals of the absolute and relative squared deviation are small for

the optimal filter, compared to the standard versions. The means of the bootstrap

distribution indicates that the optimal filter consistently outperforms standard filters.

The only exception occurs for the relative squared deviation of the Hodrick-Prescott

filter. In this case the distribution of the standard implementation has virtually the

same mean as the distribution of the optimal filter.

5 Conclusions

This paper discusses how linear filters with long and possible infinite impulse re-

sponse sequences can be implemented for finite time-series in an optimal fashion.

8This is a commonly used parametric form for the U.S. output series, see, for example Watson
(1986).
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The analysis is based on Hilbert space projections and the optimization problem can

be formulated either in the time- or in the frequency domain. The latter represen-

tation lends itself to the intuitive interpretation that the spectral density acts as a

weighing function for the accuracy of the finite sample approximation.

For stationary time-series the optimal finite sample filter coefficients are a linear

combination of the coefficients of the ideal filter sequence, with the autocovariance

sequence coefficients acting as weights. This closed form solution is consistent with the

above mentioned frequency domain interpretation, since the autocovariance function

and the spectral density are a Fourier pair. For integrated time-series a necessary

condition for optimality is that the sum of all finite sample filter coefficients is equal

to the gain of the ideal filter at zero frequency. This result derives from the fact

that the (pseudo) spectrum of an integrated process has infinite power at the zero

frequency and any discrepancy of the filter approximation would lead to an infinite

value of the objective function, and an ill-defined optimization problem. For pure

random walks the adjustments affect only the first and last coefficient of the sample,

for symmetric filters these adjustments can be expressed in a finite sum even if the

impulse response sequence is infinite. For ARIMA models an optimal finite sample

approximation is constructed by combining the results of propositions 1 to 3.

The optimal filter can be implemented by of first estimating the autocovariance func-

tion of the stationary component of the time-series (either directly, or by fitting an

ARIMA model). In the case where no analytic expression of the impulse response

function of the ideal filter exists, the filter coefficients can be computed by numerical

integration of the inverse Fourier transformation of the transfer function.
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An empirical example shows that the proposed solutions improve the accuracy of

end-of-sample approximations for the bandpass filter, the Hodrick-Prescott filter and

the Butterworth filter. Apart from these three filters the methodology of this paper

is relevant for a wide range of filters with long impulse response sequences that fall

outside the sample. In particular this group contains all filters with a rational lag

polynomial, such as the Beveridge-Nelson smoother that was recently proposed by

Proietti and Harvey (2001).

Matlab code for the examples and figures in the paper is available from the author.
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Appendix

A Proof of proposition 1

An absolutely summable (possibly complex) function γ(·) defined on the integers is

the autocovariance function of a stationary process if (and only if)

fx(ω) =
∞∑

k=−∞

eikωγk ≥ 0, ω ∈ [−π, π],

in which case fx(ω) is the spectral density of γ(·)9.

The optimization criterion can then be rewritten as

V (B̂) =
1

2π

∫ π

−π

|B(eiω)− B̂(eiω)|2fx(ω)dω

=
1

2π

∫ π

−π

∞∑
k=−∞

|B(eiω)− B̂(eiω)|2eikωγkdω

=
1

2π

∞∑
k=−∞

γk

∫ π

−π

|B(eiω)− B̂(eiω)|2eikωdω,

where the interchange of summation and integration is justified by the Fubini-Tonelli

theorem since 1
2π

∫ π

−π

∑∞
k=−∞ |B(eiω)−B̂(eiω)|2|eikωγk|dω <∞ by square summability

of {Bj} and absolute summability of γ(·).

The first-order conditions with respect to B̂j are

∞∑
k=−∞

γk

∫ π

−π

B̂(eiω)eiω(j−k)dω =
∞∑

k=−∞

γk

∫ π

−π

B(eiω)eiω(j−k)dω.

9 This definition differs slightly from the usual definition, which relates the covariance function
and the spectral density as the the Fourier pair

fx(ω) =
1
2π

∞∑
k=−∞

e−ikωγ(k) ⇔ γ(k) =
∫ π

−π

eikωfx(ω)dω,

(see e.g. Brockwell&Davis (1991), p. 120).

32



Since {eiωn} are orthonormal, all summands with a non-zero exponent disappear and

the first-order conditions simplify to

B̂γ0 +
∞∑

k=1

[B̂j+k + B̂j−k]γk = Bjγ0 +
∞∑

k=1

[Bj+k +Bj−k]γk, j = −n1, ..., n2

or

B̂jγ0+

min (Q,n1+j)∑
k=1

B̂j−kγk+

min (Q,n2−j)∑
k=1

B̂j+kγk = Bjγ0+

Q∑
k=1

[Bj+k+Bj−k]γk, j = −n1, ..., n2

if γk = 0 for k ≥ Q.

In matrix notation this system of equations can be written as

ΓB = Γ̂B̂

where Γ, Γ̂, B and B̂ are described in proposition 1. Γ̂ is a symmetric matrix with

nonzero diagonal entries and, in general, invertible.

�

B Proof of proposition 2

The criterion of the optimization problem is given by

V (B̂) =
1

2π

∫ π

−π

|B(eiω)− B̂(eiω)|2 σ2

|1− eiω|2
dω

=
σ2

2π
‖B(eiω)− B̂(eiω)

1− eiω
‖2.

Since for any function f ∈ L2, |
∫
f 2| ≤

∫
|f |2 (Cauchy-Schwarz ), a necessary condi-

tion for the criterion to be finite is that∣∣∣∣∣∣
∫ π

−π

(
B(eiω)− B̂(eiω)

1− eiω

)2

dω

∣∣∣∣∣∣
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=

∣∣∣∣∣
∮
|z|=1

(B(z)− B̂(z))2

iz(1− z)2
dz

∣∣∣∣∣ <∞.

The denominator has a double pole at z = 1 and its contour integral is unbounded∣∣∣∣∮
|z|=1

1

z(1− z)2
dz

∣∣∣∣ = ∞,

which makes it necessary to impose restrictions on the numerator to ensure finiteness.

Since B(z) and B̂(z) are polynomials, the only possible restriction is of the form

B(z)− B̂(z) = g(z)[C(z)− Ĉ(z)],

where g(z), C(z) and Ĉ(z) are also polynomials. The lowest order polynomial which

removes the singularity is g(z) = 1−z, that is, we restrict B(z)− B̂(z) to have a zero

at z = 1, offsetting the pole at the same location. Since 1 is a root of B(z) − B̂(z),

the transfer functions of both filters have to be equal to some constant β at the zero

frequency

B(1) =
∞∑

k=−∞

Bj =
∞∑

k=−∞

B̂j = B̂(z) ≡ β.

To solve for the coefficients of C(z) and Ĉ(z), define a = C(z)− Ĉ(z). Then

B(z)− B̂(z) =
∞∑

j=−∞

(Bj − B̂j)z
j

= (1− z)
∞∑

j=−∞

ajz
j

=
∞∑

j=−∞

(aj − aj−1)z
j.

Therefore Bj − B̂j = aj − aj−1 ∀j ∈ Z. There are three different cases to consider:

• j < −n1: B̂j = 0, therefore aj = aj−1 +Bj and

aj =

j∑
k=−∞

Bk.
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• −n1 ≤ j ≤ n2: aj = aj−1 +Bj − B̂j, therefore

aj =

j∑
k=−∞

Bk −
n2∑

k=−n1

B̂k.

• n2 < j: B̂j = 0, therefore aj = aj−1 +Bj and

aj =

j∑
k=−∞

Bk −
n2∑

k=−n1

B̂k =

j∑
k=−∞

Bk − β = −
∞∑

k=j+1

Bj.

We can therefore describe the polynomials C(z) and Ĉ(z) as

Cj =

{ ∑j
k=−∞Bk if j ≤ n2

−
∑∞

k=j+1Bk if j > n2

, Ĉj =

n2∑
k=−n1

B̂j.

Note that while B̂(z) is a polynomial from −n1 to n2, Ĉ(z) has exponents from −n1

to n2 − 1, reflecting the loss of flexibility due to the integration-restriction.

It is now possible to restate the optimization problem in terms of C and Ĉ as

V ({Ĉj}n2−1
j=−n1

) =
1

2π

∫ π

−π

|C(eiω)− Ĉ(eiω)|2dω.

A sufficient condition for the integral to be finite is that
∑∞

j=−∞ |Cj|2 < ∞. From

the above definition of Cj and keeping in mind that finite sums of finite elements are

bounded and can therefore be omitted, the criterion can be restated as

0∑
j=−∞

|
j∑

k=−∞

Bk|2 +
∞∑

j=1

|
∞∑

k=j+1

Bk|2 <∞.

The optimization problem V (Ĉ) is identical to the the problem V (B̂) for white noise

series in appendix A, with first order conditions

Ĉj = Cj, j = −n1, ..., n2 − 1.
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Together with the constraint
n2∑

j=−n1

B̂j = β,

the solution forms a system of N linear equations in N unknowns, with matrix rep-

resentation [
D

ι

]
B̂ =

[
C

β

]
.

�

C Proof of proposition 3

With symmetric filters (Bj = B−j) it is possible to express the (semi)-infinite sums

of proposition 2 with finite closed forms that can be conveniently expressed in matrix

notation.

As before we define B(1) =
∑∞

k=−∞Bk = β. Then for j < 0:

Cj =

j∑
k=−∞

Bk =
∞∑
−∞

Bk −
∞∑
−j

Bk −
−j−1∑
j+1

Bk

2

j∑
k=−∞

Bk = β −B0 − 2

|j|−1∑
k=1

Bk

Cj =
β

2
− B0

2
−

|j|−1∑
k=1

Bk

Similarly, for 0 ≤ j ≤ n2:

Cj =

j∑
k=−∞

Bk = β −
∞∑

k=j+1

Bk

= β − C−j
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= β − β

2
+
B0

2
+

j∑
k=1

Bk

=
β

2
+
B0

2
+

j∑
k=1

Bk.

In matrix notation (using the definitions from proposition 2) this can be written as

C = MB +
β

2
τ.

�
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Figure 1: Filtering the ARMA(1,1) process of Example 1 for the passband π/6, π/2]

with 7 symmetric coefficients (n1 = n2 = 3). The left column shows the actual

spectral density, the squared gain function of the filter and the squared leakage,

weighted by the actual spectral density. The right column shows a standard iid -filter

for comparison.
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Figure 2: Transfer function of an optimal bandpass filter (with a = π/6, b = π/2, n1 =

n2 = 3) for a random walk (left) and for iid disturbances (right). The bottom row

shows effective leakage when the underlying process follows a random walk. For the

iid -filter leakage approaches infinity at the origin.
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Figure 3: Comparison between the Dirichlet truncation and the optimal I(1) filter for

a random walk with sample size 29. The filters are approximations for a bandpass

filter with passband [π
6
, π

2
].
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Figure 4: Implementation of the Hodrick-Prescott filter for a random walk process

for a sample of 29 observations and λ = 100.
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Figure 5: Implementation of the Butterworth filter for a random walk with sample

size 29, cutoff frequency ωc = 3π
8

and n = 8.
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Figure 6: Log Quarterly U.S. GDP (1946-2000). NBER recessions are shaded.
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provides a close approximation of the ideal filter. NBER recessions are shaded.
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Table 1: Sample Statistics

Bandpass Filter

Variance Correlation

σ2
s 1.79 [0.98, 2.01, 3.11 ] ρsm 0.79 [0.48, 0.67, 0.84 ]

σ2
o 1.17 [0.56, 1.23, 1.94 ] ρom 0.77 [0.43, 0.65, 0.82 ]

σ2
m 3.06 [1.16, 2.41, 3.80 ] ρso 0.92 [0.72, 0.89, 0.97 ]

Av. Sq. Deviation Rel. Sq. Deviation

Is 1.3141 [0.76, 1.60, 2.90 ] Rs 0.4284 [0.33, 0.72, 1.54 ]

Io 1.3055 [0.73, 1.38, 2.34 ] Ro 0.4256 [0.37, 0.60, 0.98 ]

Hodrick-Prescott Filter

Variance Correlation

σ2
s 3.23 [1.58, 3.18, 4.83 ] ρsm 0.60 [0.34, 0.56, 0.74 ]

σ2
o 1.35 [0.71, 1.49, 2.30 ] ρom 0.75 [0.50, 0.67, 0.81 ]

σ2
m 3.12 [1.43, 2.82, 4.18 ] ρso 0.84 [0.69, 0.82, 0.90 ]

Av. Sq. Deviation Rel. Sq. Deviation

Is 2.4818 [1.11, 2.66, 5.35 ] Rs 0.7933 [0.51, 0.95, 1.61 ]

Io 2.4000 [1.83, 2.55, 3.59 ] Ro 0.7671 [0.62, 0.96, 1.47 ]

Butterworth Filter

Variance Correlation

σ2
s 23.84 [9.49, 35.29, 67.27 ] ρsm 0.29 [0.07, 0.25, 0.48 ]

σ2
o 1.35 [0.63, 1.38, 2.13 ] ρom 0.74 [0.47, 0.66, 0.81 ]

σ2
m 3.07 [1.27, 2.52, 3.83 ] ρso 0.36 [0.08, 0.35, 0.59 ]

Av. Sq. Deviation Rel. Sq. Deviation

Is 21.8680 [8.46, 34.36, 84.59 ] Rs 7.1126 [2.98, 14.88, 40.41 ]

Io 1.3966 [0.80, 1.44, 2.33 ] Ro 0.4542 [0.36, 0.60, 0.97 ]

s, o and m denote the standard, optimal and ideal filter, respectively. In parenthesis: [lower

bound of 95% confidence interval, mean, upper bound of 95% confidence interval] from 999

bootstrap resamples. 48
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