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Abstract

In this paper we empirically examine a heterogenous bounded rationality
version of a hybrid New-Keynesian model. The model is estimated via
the simulated method of moments using Euro Area data from 1975Q1
to 2009Q4. It is generally assumed that agents’ beliefs display waves of
optimism and pessimism - so called animal spirits - on future movements
in the output and inflation gap. First, our main empirical findings show
that a bounded rationality model with cognitive limitation provides fits
for auto- and cross-covariances of the data, which are slightly better than
or equal to a linear model where rational expectations are assumed. The
result is mainly driven by a high degree of persistence in the output gap
and the inflation gap due to the impact of animal spirits on economic
dynamics. Further, over the whole time interval the agents had expected
moderate deviations of the future output gap from its steady state value
with low uncertainty. Finally, we find strong evidence for an autoregressive
expectation formation process regarding the inflation gap.
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1 Introduction

The rational expectations are a flexible and natural way of modeling market
behavior in dynamic stochastic general equilibrium (DSGE) models, which are
widely used by macroeconomists. Since the advantage of rational expecations
is a convenient analytical tractability, this modeling framework serves as an
efficient toolbox for analyzing monetary and fiscal policy measures. As Sel-
ten (2001) states, however, "modern mainstream economic theory is largely
based on an unrealistic picture of human decision theory" since evidence from
experimental studies supports information processing with limited cognitive
ability of agents rather than perfect information (see Hommes (2011) among
others). Indeed, many research has been done on alternative forms of infor-
mation processing mechanisms in macroeconomics; see e.g. the literature on
learning (Evans and Honkaphohja (2001)), rational inattention (Sims (2003)),
sticky information (Mankiw and Reis (2002)) or bounded rationality in general
(Sargant (1994) and Kahneman (2003)).1

For the most part of the behavioral research, we can treat the realization of
economic decisions as being a complex and interactive process between different
types of agents. Keynes (1936) already attributed significant irrationality to
human nature and discussed the impacts of waves of optimism and pessimism
- so called animal spirits - on economic outcome. According to Akerlof and
Shiller (2009), the emotional states are reflected in economic behaviors - see
also Franke (2012) for his extensive discussion about market behavior and how
expectation formation should be treated in macroeconomic models.

In this paper we attempt to empirically examine the hypothesis that the
behavioral heterogeneity will have a macroscopic impact on the economy. The
point of view taken here is that a behavioral model can provide a conceptual
framework for a cognitive ability as well as a substantial degree of inertia in
the DSGE models. De Grauwe (2011) emphasizes that if agents are known to
be either optimists or pessimists, their ability (or better: limitation) and their
expectation formation processes affect economic conditions, i.e. movements in
employment, the output gap and inflation, more appropriately than standard
rational expectation models.2 Indeed, it is shown in the expectation formation
process under bounded rationality that we can explicitly model animal spirits
by applying discrete choice theory to the group behavior. Then the behavior
of optimists and pessimists is considered to be a by-product of the switching
mechanisms according to the performance measure from agents’ expectations.

1The problems of information transmission mechanisms in rational expectations models are
already found in early publications from Shiller (1978), i.e. the applicability of agents to
predict future economic outcome due to their perfect knowledge of the whole structure of the
model. Camerer (1998) also offers an informative overview of the discussion on this topic in
economics.

2In particular, the observed movements in the output gap and the inflation gap show a high
degree of inertia. However, this empirical fact is not well captured by purely forward-looking
NKM (see the discussion on the inflation persistence problem by Chari et. al. (2000)). Within
his behaviorial model, De Grauwe replicates such a degree of persistence even without any
backward-looking terms in the structural equations of a DSGE model, which account for price
indexation and habit formation.
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To the best of our knowledge, however, an empirical evaluation of this spe-
cific kind of model is missing in the literature so far.3 Therefore the purpose
of this paper is to measure the effects of psychological behavior on the econ-
omy under consideration of animal spirits. To fill the existing gap between the
use of the models and their empirical evaluations, we use the moment-based
estimation, which is applicable to a small-scale DSGE model. Mainly we dis-
cuss differences between two polar cases of expectation formation processes:
while the underlying model structure is identical to a standard three-equations
New-Keynesian model (NKM), we also allow both for rational expectations and
for endogenously-formed expectations using the behavioral specification by De
Grauwe (2011). In particular, we study his bounded rationality framework and
investigate empirically the role of bounded rationality on economic dynamics
in the Euro Area from 1975Q1 to 2009Q4. Accordingly, an important aspect of
this paper is to test the bounded rationality hypothesis in order to offer reliable
parameter values that can be used for calibration in more realistic-grounded fu-
ture work, e.g. studying monetary and fiscal policy analysis in a DSGE model
without the assumption of rational expectations.

In our empirical applications, we show that the NKM with rational expec-
tations or bounded rationality can generate auto- and cross-covariances of the
output gap, the inflation gap and the interest gap, which can mimic real data
well. A quadratic objective function is used in the estimation to measure the
distance between the model-generated and empirical moments. As the usual
procedure of the method of moments, the global minimum of the objective func-
tion provides consistent parameter estimates of the model. Then we evaluate
the goodness-of-fit of the model to the data from the value of the quadratic ob-
ject function, i.e. the lower this value the better the fit of the model-generated
moments to their empirical counterparts. The empirical application using the
method of moment approach stays in line with the work of Franke et al. (2011),
who estimate a similar version of the NKM presented here for two sub-samples,
i.e. the Great Inflation and Great Moderation period in the US. They come
to the conclusion that - compared to the results from Bayesian estimation -
inflation dynamics are primarily driven by intrinsic rather than extrinsic per-
sistence. This is reflected by a high degree of price indexation and a low degree
of persistence in the assumed AR(1) cost-push shock. In general, our estima-
tion technique is closely related to the approaches of indirect inference with the
difference that in our case the structural form of a DSGE model is used instead
of a auxiliary model like a SVAR (cf. Smith (1993) and Christiano et al. (2005)
among others).

As a result, we found that the bounded rationality model describes the data
slightly better or at least as good as the model with rational expectations, since
the estimated values for the quadratic objective function in both specifications
are small while the corresponding auto- and cross-covariances profiles do not
differ across both models. This result is mainly driven by a high degree of per-

3While the estimation of bounded rationality models seems to be rare in general, there exists
a large literature related to the estimation of rational expectation-based DSGE models for
the Euro Area using Bayesian techniques. Well known examples include Smets and Wouters
(2003) and Adolfson et al. (2005) among others.
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sistence in the output gap and the inflation gap due to the impact of animal
spirits on market behavior. Main findings can be summarized as follows: first,
over the whole time interval the agents had expected moderate deviations of
the future output gap from its steady state value with low uncertainty. Second,
we find strong evidence for an autoregressive expectation formation process re-
garding the inflation gap, which is in line with recent insights from experimental
economics.

The remainder of the paper is structured as follows. Section 2 introduces a
small-scale NKM and discusses two model specifications, i.e. one with rational
expectations and one under consideration of the animal spirits. The estimation
methodology is presented in section 3. Section 4 then estimates two versions of
the model by the moment-based estimation and discusses their empirical results.
Afterwards, the properties of the moment-based procedure for estimation are
examined through a Monte Carlo study and a sensitivity analysis in section 5.
Finally, section 6 concludes. The appendix collects all relevant technical details.

2 The Model: Rational Expectations and Bounded

Rationality

The New-Keynesian three-equations model reads as follows:

yt =
1

1 + χ
Ẽj

t yt+1 +
χ

1 + χ
yt−1 − τ(r̂t − Ẽj

t π̂t+1) + εy,t (1)

π̂t =
ν

1 + αν
Ẽj

t π̂t+1 +
α

1 + αν
π̂t−1 + κyt + επ̂,t (2)

r̂t = φr̂(φπ̂π̂t + φyyt) + (1− φr̂)r̂t−1 + εr̂,t (3)

where the superscript j = {RE,BR} specifies the rational expectation (RE)
model and the bounded rationality (BR) model, which we describe below. The
corresponding expectations operator is denoted by Ẽj

t , which has to specified
for both models. It goes without saying that all variables are given in quar-
terly magnitudes. Equation (1) describes a hybrid dynamic IS curve and results
from the standard utility maximization approach of a representative household.
Here the current output gap depends negatively on the real interest rate, i.e.
is stemming from intertemporal optimization of consumption and saving re-
sulting in consumption smoothing. The composite parameter τ ≥ 0 denotes
the inverse intertemporal elasticity of substitution. Equation (2) stands for the
hybrid New-Keynesian Phillips Curve where the output gap (yt) is the driving
force of inflation due to monopolistic competition and the Calvo price-setting
scheme. The slope of the Phillips Curve is given by the parameter κ ≥ 0. The
parameter ν denotes the discount factor (0 < ν < 1). According to the Taylor
rule with interest rate smoothing (3), the nominal interest gap is a predeter-
mined variable while the monetary authority reacts directly to movements in
the output (φy ≥ 0) and inflation (φπ̂ ≥ 0) gap. We account for intrinsic persis-
tence in this stylized version of the well-known Smets and Wouters (2003, 2005
and 2007) model due to the assumption of backward-looking behavior indicated
by the parameters for habit formation χ, price indexation α and interest rate
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smoothing φr̂ respectively (0 ≤ χ ≤ 1, 0 ≤ α ≤ 1, 0 ≤ φr̂ ≤ 1). We assume that
the exogenous driving forces in the model variables follow idiosyncratic shocks
εz,t which are drawn from multivariate normal distributions around mean zero
with variances σ2

z with variables z = {y, π̂, r̂}.
Note here that we consider the gaps instead of the levels and therefore

account explicitly for a time-varying trend in inflation and in the natural rate
of interest. The corresponding gaps are simply given by taking the difference
of the actual value for inflation and the interest rate from their trends (i.e.
time-varying steady state values) respectively where the latter is computed by
applying the Hodrick-Prescott filter with a standard value of the corresponding
smoothing parameter of 1600. Accordingly the set of equations models the
dynamics in the output gap yt, the inflation gap π̂t and the nominal interest
rate gap r̂t, where x̂t with x = {π, r} denotes the deviations from the time-
varying trend.

The results of many studies show that assuming a constant trend, like a
zero-inflation steady state, leads to misleading results. For example, Ascari
and Ropele (2009) observe that the dynamic properties (i.e. mainly the sta-
bility of the system) depend on the variation in trend inflation. Cogley and
Sbordone (2008) also provide evidence for the explanation of inflation persis-
tence by considering a time-varying trend in inflation. In the same vein, we can
abandon the assumption of a constant natural rate of interest as being empir-
ically unrealistic. In this paper, we follow the empirical approaches proposed
by Cogley et. al. (2010), Castelnuovo (2010), Franke et. al. (2011) among oth-
ers, who also consider gap specifications for inflation (and the nominal interest
rate). Furthermore, inflation and money growth are likely to be non-stationary
in the Euro Area data. If that is the case, the estimation methodology such as
the method of moments approach presented here (or the Generalized Method of
Moments in general) will lead to biased estimates.4 Taken this into account, in
the current study we consider the gaps rather than the levels in order to ensure
the stationary of the times series.

To make the description of the expectation formation processes more ex-
plicit, first we examine two polar cases in the theoretical model framework of
the NKM. First, under rational expectations, the forward-looking terms, which
are the expectations of the output gap and inflation gap at time t+ 1 in equa-
tions (1) and (2), are just given by

ẼRE
t yt+1 = Etyt+1 (4)

ẼRE
t π̂t+1 = Etπ̂t+1 (5)

where Et denotes the expectations operator. Second, as regards the other
specification, we depart from rational expectations by considering a behaviorial
model of De Grauwe (2011). It is generally assumed that agents will be either
optimists or pessimists (in the following indicated by the superscripts O and P ,
respectively) who form expectations based on their beliefs regarding movements

4See also Russel and Banerjee (2008) as well as Aussenmacher-Wesche and Gerlach (2008)
among others for methodological issues related to non-stationary inflation in US and Euro
Area.
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in the future output gap:

EO
t yt+1 = dt (6)

EP
t yt+1 = −dt (7)

where

dt =
1

2
· [β + δσ(yt)] (8)

"can be interpreted as the divergence in beliefs among agents about the output
gap" (De Grauwe (2011, p. 427)). In contrast to the RE model, both types of
agents are uncertain about the future dynamics of the output gap and therefore
predict a fixed value of yt+1 denoted by β ≥ 0. We can interpret the latter as the
predicted subjective mean value of yt. However, this kind of subjective forecast
is generally biased and therefore depends on the volatility in the output gap; i.e.
given by the unconditional standard deviation σ(yt) ≥ 0. In this respect, the
parameter δ ≥ 0 measures the degree of divergence in the movement of economic
activity. Note that due to the symmetry in the divergence in beliefs, optimists
expect that the output gap will differ positively from the steady state value
(which for consistency is set to zero) while pessimists will expect a negative
deviation by the same amount. The value of δ remains the same across both
types of agents.

The expression for the market forecast regarding the output gap in the
bounded rationality model is given by

ẼBR
t yt+1 = αO

y,t · EO
t yt+1 + αP

y,t · EP
t yt+1 = (αO

y,t − αP
y,t) · dt (9)

where αO
y +αP

y = 1. The probabilities that agents choose a specific forecasting

rule, i.e. (6) or (7), are denoted as αO
y,t and αP

y,t respectively. In particular,

αO
y (or αP

y ) can also be interpreted as the probability being an optimist (or
pessimist). In the following, we show explicitly how these probabilities are
computed. Indeed, the selection of the forecasting rules (6) or (7) depends on
the forecast performances of optimists and pessimists Uk

t given by the mean
squared forecasting error, of which values can be updated in every period as

Uk
t = ρUk

t−1 − (1− ρ)(Ek
t−1yt − yt)

2 (10)

where k = O, P and the parameter ρ denotes the measure of the memory
of agents (0 ≤ ρ ≤ 1). Here ρ = 0 means that agents have no memory of past
observations while ρ = 1 means that they have infinite memory instead. By ap-
plying discrete choice theory under consideration of the forecast performances,
agents revise their expectations with which different performance measures will
be utilized for αO

y,t and αP
y,t:

5

αO
y,t =

exp(γUO
t )

exp(γUO
t ) + exp(γUP

t )
(11)

αP
y,t =

exp(γUP
t )

exp(γUO
t ) + exp(γUP

t )
= 1− αO

y,t (12)

5See also Westerhoff (2008, p. 199) and Lengnick and Wohltmann (forthcoming) among others
for an application of discrete choice theory to models in finance and macroeconomics.
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where the parameter γ ≥ 0 denotes the intensity of choice: If γ = 0, the self-
selecting mechanism is purely stochastic (αO

y,t = αP
y,t = 1/2) whereas if γ = ∞,

it is fully deterministic (αO
y,t = 0, αP

y,t = 1 or vice versa; see De Grauwe (2011),
p. 429). For clarification, if γ = 0 agents are indifferent in being optimist or
pessimist whereas if γ = ∞ they react quite sensitively to infinitesimal changes
in their forecast performances.

We explain this revision process as follows. Given the past value of the fore-
cast performance (Uk

t−1), the lower the difference between the expected value
of the output gap (taken from the previous period, i.e. Ek

t−1yt = |dt−1|) and
its realization in period t, the higher the corresponding forecast performance
Uk
t will be. In other words, if e.g. the optimists predict future movements in

yt more accurately compared to the pessimists, then this results in UO
t > UP

t .
Hence, the pessimists revise their expectations by switching to the forecasting
rule used by the optimists, which we can express as EO

t yt+1 = dt. Finally, this
forecasting rule becomes dominant and the share of pessimistic group in the
market decreases. Based on the equations (10) to (12), we can rationalize equa-
tion (9) by using simple substitution. This results in a higher degree of volatility
in the expectation formation process regarding the output gap compared to the
outcome given in the RE model (we refer to section 4.2 for a clarification).

The same logic can be applied for the inflation gap expectations. Following
the behavioral heterogeneity approach proposed by De Grauwe (2011, pp. 436),
we assume that agents will be either so called inflation targeters or extrapola-
tors.6 In the former case, the central bank anchors expectations by announcing
a target for the inflation gap ¯̂π. From the view of the inflation targeters, we
consider this pre-commitment strategy fully credible. Hence the corresponding
forecasting rule becomes

Etar
t π̂t+1 = ¯̂π (13)

where we assume ¯̂π = 0.7 On the other hand, the extrapolators form their
expectations in a static way and will expect that the future value of the inflation
gap equals its past value, i.e.

Eext
t π̂t+1 = π̂t−1. (14)

This results in the market forecast for the inflation gap similar to (9):

ẼBR
t π̂t+1 = αtar

π̂,tE
tar
t π̂t+1 + αext

π̂,tE
ext
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1. (15)

The forecast performances of inflation targeters and extrapolators are given by
the mean squared forecasting error written as

U s
t = ρU s

t−1 − (1− ρ)(Es
t−1π̂t − π̂t)

2 (16)

6This concept of behavioral heterogeneity has already been developed in financial market mod-
els, see e.g. Chiarella and He (2002) as well as Hommes (2006) among others.

7In this respect (based on a optimal monetary policy strategy), an inflation gap target of
zero percent implies that the European Central Bank seeks to minimize the deviation of its
(realized) target rate of inflation from the corresponding time-varying steady state value,
where in the optimum this deviation should be zero.
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where s = (tar, ext) and finally we may write that:

αtar
π̂,t =

exp(γU tar
t )

exp(γU tar
t ) + exp(γU ext

t )
(17)

αext
π̂,t =

exp(γU ext
t )

exp(γU tar
t ) + exp(γU ext

t )
= 1− αtar

π̂,t . (18)

Here αtar
π̂,t denotes the probability to be an inflation targeter, which is the case

if the forecast performance using the announced inflation gap target is superior
to the extrapolation of the inflation gap expectations and vice versa. Note
here that the memory (ρ) as well as the intensive of choice parameter (γ) do
not differ across both expectation formation processes regarding the output
and inflation gap. In the end, the bounded rationality model turns out to
be purely backward-looking (cf. equations (10) and (16)) while the forward-
and backward-looking behavior is contained in the rational expectation model.8

The solution to both systems can be computed by backward-induction and the
method of undetermined coefficients respectively, which is shown in appendix
A1.

3 The Estimation Methodology

Over the last decade the Bayesian estimation became the most popular method
for the estimation of DSGE models while pushing classical estimation methods
aside such as the generalized method of moments and the maximum likelihood
approach. Indeed, the Bayesian approach certainly has the advantage over the
others: on the one hand, the distributions of the parameters in a system of
equations framework can be easily computed using beneficial software packages
like e.g. Matlab Dynare. On the other hand, however, there are two major
disadvantages when we apply Bayesian techniques to our empirical study.

First, this empirical methodology requires the choice of appropriate prior
distributions associated with the underlying economic interpretation of the
structural parameters. It is still an open question what criteria are suited
best in order to identify the most accurate prior information. For instance,
Lombardi and Nicoletti (2011) discuss the sensitivity of posterior estimation
results to the choice of different expressions of the prior knowledge; Del Negro
and Schorfheide (2008) also provide an explicit method for constructing prior
distributions based on the beliefs regarding macroeconomic indicators. How-
ever, so far the existing knowledge by neuroscientists does not allow for pinning
down a general micro-founded model on information processing (De Grauwe

8For example, Roos and Schmidt (2012) also find evidence for a backward-looking behavior in
forming expectations by non-professionals in economic theory and policy. In their experimental
study, they show that the projections of the future realizations in the output gap and inflation
are based either on historical patterns of the time series or - in the case of no available
information - on simple guessing. These observations help to motivate the assumption of the
divergence in beliefs (guessing) and the existence of the extrapolators (pattern-based time-
series forecasting) done by De Grauwe (2011) and adopted in our paper here.
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(2011)). Additionally in the Bayesian estimation we should cope with the spec-
ification of prior distributions, which is often unspecified, i.e. ’uninformative’
priors; as a result, the estimated posterior becomes quite similar to the prior
distribution. In this respect we need some caution for a Bayesian analysis when
prior information is unavailable at least for the behavioral parameters β, δ and
ρ. Second, due to the fact that the BR model is non-linear (as a result of apply-
ing discrete choice theory) a researcher must apply a Bayesian full-information
analysis using a particle filter. Especially, as long as this filter method is used
for evaluating the likelihood function, the estimation of the model can be sub-
jected to e.g. an increase in approximation errors of the non-linearities (DeJong
and Dave (2007), Chapter 11).

To avoid these disadvantages of the Bayesian approach to non-linear mod-
els, in this paper we seek to match the model-generated autocovariances of the
interest gap, the output gap and inflation gap with their empirical counter-
parts. We minimize the distance between these model-generated and empirical
so-called moments under consideration of a quadratic function, which summa-
rizes the characteristics of empirical data. We call this simply the moment
matching estimation approach (cf. Franke et al. (2011)). Main advantage of
this econometric method is that we can transparently check the goodness-of-fit
of the model to data. Namely, we can examine the dynamic properties of the
model, since the empirical comparison (graphically) between the match of the
estimated and simulated autocovariances is direct.

Now we discuss the moment-matching approach in detail used in this paper.
The method of moments estimation comprises distributional properties of em-
pirical data Xt, t = 1, · · · , T . The sample covariance matrix at lag k is defined
by:

mt(k) =
1

T

T−k∑

t=1

(Xt − X̄)(Xt+k − X̄)′ (19)

where X̄ = (1/T )
∑T

t=1 Xt is the vector of sample mean. The sample aver-
age of discrepancy between the model-generated and the empirical moments is
denoted as g(θ;Xt):

g(θ;Xt) ≡
1

T

T∑

t=1

(m∗
t −mt) (20)

where m∗
t is the empirical moment function and mt the model-generated

moment function (cf. (19)). Given that the length of the business cycles lies
between (roughly) one and eight years in the Euro Area, the estimation should
not be based on too long a lag horizon. A reasonable compromise is a length
of two years, with which we will use auto- and cross-covariances of the interest
rate gap, the output gap and the inflation gap; i.e. a lag k, where k = 0, · · · , 8.
We have a p dimensional vector of moment conditions (p = 78) by avoiding

9



double counting at the zero lags in the cross relationships.9 θ is a l × 1 vector
of unknown parameters with a parameter space Θ.

We obtain the parameter estimates from the following quadratic objective
function (or loss function) during the minimization process:

Q(θ) = arg min
θ∈Θ

g(θ;Xt)
′ W g(θ;Xt) (21)

with the weight matrix W estimated consistently in several ways (see Andrews
(1991)). A striking feature of the method of moments approach is transparency.
In particular, it is easy to check the goodness-of-fit of the model from the
moment conditions of interest, i.e. the dynamic properties of the model can
be tested by evaluating graphically the match of the estimated and model-
generated moments as discussed in the following section. The present study
uses the heteroscedasticity and autocorrelation consistent (HAC) covariance
matrix estimator suggested by Newey and West (1987). The kernel estimator
has the following general form with the covariance matrix of the appropriately
standardized moment conditions:

Γ̂T (j) =
1

T

T∑

t=j+1

(mt − m̄)(mt − m̄)′ (22)

where m̄ once again denotes the sample main. Following an automatic
selection for the lag length, we set j to 5 when constructing the estimate of the
covariance matrix, i.e. ∼ T 1/3 (Newey and West (1994)):

Ω̂NW = Γ̂T (0) +
5∑

j=1

(
Γ̂T (j) + Γ̂T (j)

′
)
. (23)

The weight matrix is computed from the inverse of the estimated covariance
matrix. However, the high correlation of moments that we consider makes the
estimated covariance matrix near singular. In addition, the moment conditions
and the elements of the weight matrix are highly correlated for the small sample
size (Altonji and Segal (1996)). Therefore, we use the diagonal matrix entries

as the weighting scheme, i.e. Ŵ = Ω̂−1
ii .

Under certain regularity conditions, one can derive the following asymptotic
distribution of the method of moments estimation for the parameters:

√
T (θ̂T − θ0) ∼ N(0, V ) (24)

where V = [(DWD′)−1]D′WΩWD[(DWD′)−1]′ and D is the gradient vector
of moment functions evaluated around the point estimates:

9The Delta method is used to compute the confidence bands in the auto- and cross-covariance
moment estimation (see Appendix A2 for details).
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D̂T =
∂m(θ;XT )

∂θ

∣∣∣∣
θ=θ̂T

. (25)

However, we ignore the off-diagonal components of the matrix Ω̂NW for
estimating the weight matrix. The estimated confidence bands, then, become
wider since the weighting scheme in the objective function is not optimal.10

Under RE, we can obtain the simple analytical moment conditions of the
model. However, for the BR model, the analytical expressions for the moment
conditions are not readily available due to the non-linear discrete choice frame-
work. To circumvent this problem, we use the simulated method of moments
to identify the behavioral parameters in the BR model. The simulated method
of moments is particularly suited to a situation where the model is easily sim-
ulated by replacing theoretical moments. Then the model-generated moments
in (23) are replaced by their simulated counterparts:

mt =
1

S · T

S·T∑

t=1

m̃t. (26)

First, we simulate the data from the model and compute the moment con-
ditions (m̃t) in order to approximate the analytical moments (mt). Note that
here we denote by S the simulation size and set it to 100. The asymptotic
normality of the simulated method of moments holds under certain regularity
conditions (Duffie and Singleton (1993)). Finally, we use the J test to evaluate
compatibilities of the moment conditions:

J ≡ T ·Q(θ̂) →d χ2
p−l (27)

where the J-statistic is asymptotically χ2 distributed with (p − l) degrees of
freedom (over-identification).

4 Empirical Application to the Euro Area

4.1 Data

The data source for the New Keynesian model is the 10th update of the Area-
wide Model quarterly database described in Fagan et. al. (2001). The output
gap and interest rate gap are computed from real GDP and nominal short-
term interest rate respectively using the Hodrick-Prescott filter with a standard
smoothing parameter of 1600. The inflation gap measure is the quarterly log-
difference of the Harmonized Index of Consumer Prices (HICP) instead of the

10As long as we estimate a large set of parameters in the model, the identification problem
may occur. We attempt to address these issues using a Monte Carlo experiment as well as a
sensitivity analysis, which will be discussed in section 5.
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GDP deflator.11 The sample for this data set is available from 1970:Q1. As
we use the data over five years in a rolling window analysis to estimate the
perceived volatility of the output gap σ(yt), the data applied in this study
cover the period 1975:Q1-2009:Q4.

4.2 Results

We first estimate the BR model parameters using the moment-based estimation
in the previous section. Afterward we compare it to the benchmark case, namely
the RE model and attempt to identify the effects of divergence in beliefs on
the inflation and output gap dynamics. As it is common in an overwhelming
amount of empirical studies, the discount parameter ν is calibrated to 0.99.
We also fix γ to unity, which is in line with De Grauwe (2011, p. 439) and
accounts for a moderate degree in the intensity of choice, since we are not
interested in the ability of the model for individual choice but its connection to
expectation formation process instead. By fixing those parameters in the final
estimation, we can avoid high-dimensionality of the parameter space and reduce
the uncertainty of the estimates.12 Given these assumptions, we separately
obtain the estimates for remaining parameters from the rational and bounded
rationality model via the moment-based estimation. They are presented in
Table 1. Several observations are worth mentioning. Most importantly, the

empirical test of bounded rationality (viz. the assumption of the divergence
in beliefs) has to be treated carefully, because all parameters (especially the
behavioral ones) within the non-linear modeling approach are generally poorly
determined, i.e. wide confidence bands occur. We delve into this problem by
examining the finite size properties of the moment-based procedure through a
Monte Carlo study and a sensitivity analysis presented in the next section. Our
results from these exercises achieve confidence in the parameter estimates given
in Table 1.

The parameter estimate of the degree of price indexation α is much higher
in the RE (0.765) compared to the BR (0.203) model. It follows that the
expressions, which are in front of the forward- and backward-looking terms in
the Phillips Curve, indicate a higher weight on Ẽj

t π̂t+1 (i.e.
ν

1+αν > α
1+αν ). Then

we can emphasize that the result is more pronounced for the BR (0.82 > 0.18)
compared to the RE model (0.56 > 0.43). For the latter, this means that there
is strong evidence for a hybrid structure. The empirical applications of the

11We resort to the HICP instead of the conceptually more appropriate implicit GDP-deflator
which is common in the literature, since the former is more in line with micro data evidence.
For instance, Forsells and Kenny (2004) show that inflation expectations can be approximated
by micro-level data like consumer surveys (i.e. in the European Commission survey indicators).
Also see Ahrens and Sacht (2011, pp. 10–11) for a more detailed discussion on using the HICP
instead of the GDP-deflator in macroeconomic studies.

12Goldbaum and Mizrach (2008) estimated the intensity of choice parameter in the dynamic
model for mutual fund allocation decision. In our application, the system with many pa-
rameters is likely to have a likelihood with multiple peaks, some of which are located in
uninteresting or implausible regions of the parameter space. By fixing the intensity of param-
eter, we concentrate on our objective of empirical application, i.e. the interpretation of the
role of bounded rationality in the NKM.
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Table 1: Estimates of the RE and BR Model

Label RE BR

α 0.765 0.203
(0.481 - 1.000) (0.000 - 0.912)

χ 1.000 0.950
- (0.000 - 1.000)

τ 0.079 0.387
(0.000 - 0.222) (0.000 - 0.927)

κ 0.035 0.219
(0.011 - 0.058) (0.075 - 0.362)

φy 0.497 0.673
(0.058 - 0.936) (0.404 - 0.942)

φπ̂ 1.288 1.073
(1.000 - 1.944) (1.000 - 1.775)

φr̂ 0.604 0.673
(0.411 - 0.797) (0.523 - 0.824)

σy 0.561 0.827
(0.354 - 0.768) (0.463 - 1.190)

σπ̂ 0.275 0.743
(0.097 - 0.453) (0.449 - 1.046)

σr̂ 0.421 0.244
(0.140 - 0.701) (0.000 - 0.624)

β - 2.221
(0.000 - 9.747)

δ - 0.665
(0.000 - 7.877)

ρ - 0.003
(0.000 - 1.000)

J 56.30 40.30

Note: The data cover the period spanning 1975:Q1 - 2009:Q4 (T=140 observa-
tions). The parameters ν and γ are set to 0.99 and unity, respectively. We use
the rolling window of 5 years (20 observations) to compute the perceived volatil-
ity of the output gap, i.e. the unconditional standard deviation of yt denoted by
σ(yt). The 95% asymptotic confidence intervals are given in brackets.

BR model show that the dynamics of the inflation gap are primarily driven
by the expectations (i.e. the evaluation of the forecast performance) for the
inflation gap if cognitive limitation of agents is assumed. This is not necessarily
true under rational expectations. In other words, we find strong evidence for
an autoregressive expectation formation process since the estimated value for
α is high; one group assumes a central bank inflation target of zero percent
(equation (13)) while the other group of the agents form their expectations in
a purely static way (equation (14)). Regarding the dynamic IS equation, the
output gap is influenced by the forward- and backward-looking terms at the
same proportion, since the empirical estimates show that χ = 1 and χ = 0.950
hold for the RE and the BR models respectively. In particular, this degree
of habit persistence indicates that past observations strongly matter for the
dynamics of the output gap. Finally, the parameter estimate for the degree of

13



interest rate smoothing indicates that there is a moderate degree of persistence
in the nominal interest rate gap for the both models, since φr̂,t is slightly lower
than observed in the literature (e.g. in Smets and Wouters (2003)).13

Furthermore, while the empirical estimates for κ and τ in the RE model
indicate a small degree of inherited persistence due to changes in the real in-
terest rate gap and the output gap respectively, this does not hold for the BR
model. Here the changes in the output gap have a strong impact (κ = 0.219)
on movements in the inflation gap relative to the RE case (κ = 0.035). For
the output gap, inherited persistence plays a fundamental role in shaping the
dynamics of this economic indicator, which can be seen through the high values
of inverse intertemporal elasticity of substitution. For the BR model, this value
(τ = 0.387) is much larger than the one for the RE model (τ = 0.079). It im-
plies that the tendency towards consumption smoothing in the BR is so strong
when compared to the RE model. To sum up, our results show that in the BR
model cross-movements in the output and inflation gap account for persistence
in both variables (under consideration of perfect habit formation χ = 1) rather
than price indexation alone. This can be seen through the high values of κ and
τ compared to α. For the RE model, the opposite holds.

The output and inflation gap shocks, whose magnitudes are estimated to be
σy = 0.827 and σπ̂ = 0.743 respectively, are larger than those of the RE model.
The results reveal that the volatilities of the output and inflation gap are mit-
igated with the waves of behavioral heterogeneity. For instance, the waves of
optimism and pessimism act as a persistent force in the output gap fluctuations
with peaks and troughs. Figure 1 illustrates that the peak of the fluctuation in
the simulated output gap (middle-left panel) corresponds to the market opti-
mism (lower-left panel) and vice versa. The qualitative interpretation remains
almost the same for the inflation gap dynamics (middle- and lower-right panel
respectively) - but the dynamics of extrapolators are highly volatile reflecting
the large second moment of the empirical inflation gap (upper-right panel). The
goodness-of-fit of the models could not be directly compared by illustrating the
simulated time series (middle-panels), but we can see that the series resemble
qualitatively their empirical counterparts (upper-panels). Finally, the nominal
interest rate shocks σr̂ in the RE model are estimated to be roughly twice as
large as in the BR model.

The remaining parameter estimates confirm the known results from the
literature where the monetary policy coefficient on the output gap is low while
the opposite holds for the coefficient on the inflation gap. The latter indicates
that the Taylor principle holds over the whole sample period. Nevertheless, the
results for the BR model indicate a stronger concern in output gap movements

13The sample period in Smets and Wouters (2003) captures the period from 1980Q2 to 1999Q4.
In their paper, they apply Bayesian estimation on a medium scale model for the Euro Area.
Their results are different especially for the parameters τ and φπ̂t

which are estimated to
be higher (0.739 and 1.684). In contrast, the estimated values for κ and φy are relatively
small (0.01 and 0.10). However, we apply a moment-based estimation on Euro Area data
over a different time interval while considering gap specifications of π̂t and r̂t. Hence a direct
comparison of our results with the ones of Smets and Wouters has to be done with some
caution.

14



0 20 40 60 80 100 120 140
−5

0

5
Output Gap: Empirical

20 40 60 80 100 120 140
−4

−2

0

2

4

6
Inflation Gap: Empirical

0 20 40 60 80 100 120 140
−5

0

5
Output Gap: Simulated

 

 

0 20 40 60 80 100 120 140
−5

0

5
Inflation Gap: Simulated

0 20 40 60 80 100 120 140
0

0.5

1
Fraction of Optimists

0 20 40 60 80 100 120 140
0

0.5

1
Fraction of Extrapolators

BR Model
RE Model

Figure 1: Dynamics in the Output Gap and the Inflation Gap.

Upper and middle panels plot empirical and simulated values for the output
gap (left) and the inflation gap (right) while lower panels plot the corresponding
fraction of market optimists (left) and extrapolators (right). The simulated
time series are computed using the parameter estimates for both models given
in Table 1.

relative to the dynamics in the inflation gap. Again, the opposite is true for
the RE model. It is worth mentioning that the estimation results indicate a
monetary policy coefficient on the output gap φy of 0.673, which is in line
with the observations of De Grauwe (2011, pp. 443-445). His simulations show
that flexible inflation targeting can reduce both output gap and inflation (gap)
variability at a minimum level if φy lies in the range of 0.6 to 0.8.

The interpretation of this observation is twofold. First, in the case of strict
inflation targeting, the central bank does not account for the volatility in the
output gap. As a result, the forecast performance of the optimists and pes-
simists are not affected since the (real) interest rate gap in the dynamic IS
curve does not response directly to monetary policy. However, there is still an
indirect effect (even highly volatile movements in yt are not dampened by the
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policy makers) indicated by κ in the NKPC. Hence, due to the high degree
of inherited persistence strict inflation targeting fails to avoid strong fluctua-
tions in the output and inflation gap. Second, in the case of strong output
gap stabilization (relative to the inflation gap) the central bank dampens its
pre-commitment to an inflation target. The amplification effects of this kind
of policy on the forecast performances of the inflation extrapolators will then
result in higher inflation variability. We conclude that our empirical findings ac-
count for neither the first nor the second extreme case but for a optimal flexible
inflation targeting in the Euro Area over the observed time interval instead.
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Figure 2: Model Covariance (Cov) Profiles in Euro Area.

The dashed line results from the empirical covariance estimates. The shaded
area is the 95% confidence bands around the empirical moments. The triangle
(BR) and star (RE) lines indicate the model generated ones. The confidence
bands are computed via the Delta method (see Appendix A2).

As already noted, the present study focuses on the estimation of the bounded
rationality parameters. First, we come to the conclusion that over the whole
sample period, the optimistic agents have expected a fixed divergence of belief
of β = 2.221. Roughly speaking, the optimists have been really optimistic that
the future output gap will differ positively by slightly above one percent on
average from its steady state value.14 Due to the symmetric structure of the
divergence in beliefs, over the same sample period pessimistic agents instead

14Note that expected future value of the output gap is given by Ei
tyt+1 = |dt| =

1

2
β on average

with i = {O, P}.
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were moderately pessimistic, since from their point of view the future output
gap was expected to be around 1.1 percent on average below its steady state
value. Furthermore, both types of agents felt confident about their expectations
due to the fact that the estimate for the variable component in the divergence
of pessimistic beliefs is very low (δ = 0.665). It is also shown that there is a
low degree of uncertainty connected to the expected value of yt. In line with
the results for (and assumptions of) the parameters, which indicate endogenous
and inherited persistence (α, χ, κ and τ), the high subjective mean value of the
output gap β - in conjunction with the dynamics induced by the self-selecting
mechanisms (see the corresponding fractions in the lower-panels in Figure 1) -
explains a high volatility of the output gap. Based on discrete choice theory,
this strengthens the optimistic agents’ belief about the future output gap to
diverge in the data, since over (or under)-reactions to underlying shocks across
the Euro Area occur. The same observation holds for the inflation dynamics.
The proportion of the extrapolators in the economy corresponds to the inflation
gap movements (cf. lower right vs. upper-right panels in Figure 1): the higher
the fraction of extrapolators is, the more the inflation gap dynamics become
volatile. Finally, ρ is estimated to be zero, i.e. past errors are not taken into
account (cf. equations (10) and (16)). This leads to the conclusion that strict
forgetfulness or cognitive limitation holds, which is a requirement for observing
animal spirits (cf. De Grauwe (2011, p. 440)).

Indeed, visual inspection shows a fairly remarkable goodness-of-fit of the
models to data (see Figure 2). The match the both models achieve looks clearly
good over the first few lags and still fairly good over the higher lags until the
lag 8. In any case, all of the moments are now inside the confidence intervals of
the empirical moments. This even holds true for some covariances up to lag 20.
This is also confirmed by the values of the loss function J for the RE (56.30) and
BR (40.30) model given in the last row of Table 1. Furthermore, the picture
shows a remarkable fit of the BR model, which leads to some confidence in
the estimation procedure. We conclude that a bounded rationality model with
cognitive limitation provides fits for auto- and cross-covariances of the data,
which are slightly better than or equal to a model where rational expectations
are assumed.15

5 Robustness Checks

In this section, we report the variation of the parameter estimates under both
the RE and the BR model. First, we study the finite size properties of the
moment-based estimation using the Monte Carlo study. The result shows that
we can reduce the estimation uncertainty presented here with a large sample
size. Compared to the RE model, however, the parameter estimates of the

15Accordingly we can also prefer the BR over the RE model due to the different values of J since
the BR model fits the data slightly better than the RE model does. Nevertheless, significant
differences between two models have to be tested by a formal model comparison method since
the models do not have any difficulties to fit the empirical moments at the 5% significant
interval (see also Jang (forthcoming) among others).
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BR model have wide confidence intervals, because the estimation uncertainty
is large due to the non-linearity of the model. Therefore see the corresponding
values of the bounded rationality parameters β, δ and the memory parameter ρ
in the forecasting heuristics (11) and (12) as well as (17) and (18). Second, we
investigate the sensitivity of behavioral parameters (β, δ, ρ) in the objective
function by drawing 3-D parameter space. We vary these parameters in a
reasonable range to find the lowest value of the loss function associated the
values of the parameters.

5.1 Monte Carlo Study

To analyze the finite sample properties in the macro data, we consider three
sampling periods in the data generating process (T=100, 200, 500). The experi-
mental true parameters are drawn from the parameter estimates in the previous
section. After 550 observations are simulated, we discard the first 50 observa-
tions to trim a transient period. In the RE model, we compute the empirical
moment conditions and its Newey-West weight matrix of each artificial time
series and estimate the parameters using the method of moment estimator over
1,000 replications. The same procedure is used to estimate the parameters of
the BR model. However, this makes the computation expensive for the sim-
ulated method of moment estimator. We reduce the computational cost by
keeping the simulation size (S = 10) and the number of Monte Carlo iterations
relatively small, i.e. 200 replications.16

Table 2: Monte Carlo Study for the RE Model

T=100 T=200 T=500

Label True (θ0) Mean RMSE Mean RMSE Mean RMSE

α 0.750 0.802 0.174 0.778 0.125 0.763 0.079
χ 1.000 0.943 0.128 0.939 0.127 0.946 0.103
τ 0.085 0.100 0.062 0.088 0.043 0.083 0.029
κ 0.035 0.047 0.026 0.042 0.016 0.039 0.009
φy 0.500 0.518 0.267 0.487 0.167 0.487 0.107
φπ̂ 1.250 1.350 0.309 1.322 0.217 1.296 0.146
φr̂ 0.600 0.623 0.111 0.615 0.076 0.611 0.046
σy 0.600 0.632 0.127 0.627 0.090 0.623 0.059
σπ̂ 0.275 0.248 0.077 0.263 0.049 0.270 0.030
σr̂ 0.400 0.234 0.240 0.289 0.181 0.345 0.105

J 31.58 24.12 20.10

Note: ν is set to the value of 0.99. The reported statistics are based on 1,000
replications. RMSE is the root mean square error.

Table 2 summarizes the results from the MC experiment for the RE model.
We report the mean and the root mean square error (RMSE). The true values

16The implementation of the MC study on the model with a large simulation size (i.e. S=100)
does not have a large change in parameter estimates; see appendix A3. The theoretical
approximation error rates of analytical moments are 10% and 1% for the simulation sizes
S = 10 and 100 respectively. Since a large simulation size is expensive to compute, we report
the MC results from a small simulation size (S = 10).
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of the parameters are stated in the second column. The results show that
the method of moment estimation of the RE model has good finite sample
properties; see the RMSE sensitivity to variations in sample size. Note here
that we use the optimization tool (Matlab version R2010a) with the fmincon
solver.17

Table 3: Monte Carlo Study for the BR Model

T=100 T=200 T=500

Label True (θ0) Mean RMSE Mean RMSE Mean RMSE

α 0.200 0.309 0.308 0.361 0.297 0.271 0.175
χ 1.000 0.679 0.445 0.813 0.292 0.841 0.241
τ 0.385 1.138 1.270 0.613 0.347 0.566 0.234
κ 0.215 0.243 0.091 0.220 0.050 0.227 0.036
φy 0.675 0.763 0.190 0.697 0.099 0.697 0.076
φπ̂ 1.100 1.092 0.129 1.063 0.092 1.086 0.077
φr̂ 0.670 0.685 0.056 0.674 0.035 0.682 0.025
σy 0.825 0.886 0.257 0.894 0.114 0.875 0.083
σπ̂ 0.740 0.613 0.190 0.651 0.109 0.701 0.058
σr̂ 0.240 0.163 0.137 0.184 0.117 0.167 0.121
β 2.250 2.837 1.876 2.331 0.970 2.369 0.760
δ 0.650 1.418 1.547 1.004 0.918 0.870 0.623
ρ 0.000 0.203 0.271 0.085 0.131 0.089 0.133

J 27.94 21.68 20.58

Note: ν is set to the value of 0.99. The reported statistics are based on 200
replications. RMSE is the root mean square error.

The J test is used to evaluate the validity of the models from the artificial
data. The null hypothesis that the model is the true one is not rejected ac-
cording to the over-identification test for both the RE and the BR model. The
J test for over-identifying restrictions shows that the BR model fits the data
slightly better than the RE model on average. Nevertheless, the direct diagnos-
tic comparison between two models must be made with caution, because the
BR model has more parameters than the RE model does.

In comparison with the results of the RE model, we found that the simulated
method of moments of the BR model has more or less poor finite sample prop-
erties regarding the parameters α, τ , β, and δ; see Table 3. However, the large
uncertainty for the parameter estimates can be mitigated by more observations
in the data. On the other side, note here that we can consistently recover the
true values for the other parameter estimates. This implies that the parameter
estimates almost converge to the true ones as the sample size increases (i.e.
T=500). In this case the RMSE gets smaller. The large sample allows us to
make more accurate inference about the group behavior in the market expecta-

17Especially the interior-point algorithm has a number of advantages over other algorithms (i.e.,
active-set, trust-region-reflective, and sqp). For example, the implementation of the interior-
point algorithm for large-scale linear programming is considerably simpler than for the other
algorithms. Also it can handle nonlinear non-convex optimization problems of non-linear
objective functions in the discrete choice.
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tion formation processes. Put differently, as market behavior is unobservable in
most cases, we need a large sample size to consistently estimate the behavioral
parameters. Nevertheless, the estimated results for the behavioral parameters
can be seen as confident starting values used for calibration exercises like e.g.
(optimal) monetary and fiscal policy analysis.

5.2 Sensitivity of the Behavioral Parameters

In this sensitivity analysis we investigate the region of the objective function
with respect to different values of β, δ and ρ. The findings from the MC
study indicate that the RMSE values for these behavioral parameters in the
discrete choice are higher than those for other structural parameters even for a
large sample size T. We discuss the poor finite sample properties of these crucial
parameters in the BR model by evaluating the loss function under consideration
of different pairs for β, δ and ρ. The remaining parameters are fixed on their
estimated values taken from the second column of Table 1. It is our aim to
pin down those values from the parameter space, which are associated with
the lowest value of the loss function. We specify the range of the parameters

1.4
1.6

1.8
2

2.2
2.4

2.6
2.8

0.4
0.5

0.6
0.7

0.8
0.9

1
0

50

100

150

200

βδ

Figure 3: 3-D Contour Plot of the parameter space with β and δ. The value of the
quadratic objective function J is given on the vertical axis.

β, δ and ρ by (1.4, 2.8), (0.4, 1) and (0, 0.4), respectively. Figures 3 to 5
illustrate three contour plots, from which we can examine the region of the loss
function J under consideration of the pairwise variation in all three parameters.
We see from Figure 3 that the minimum value of the loss function is centered
around (δ, β) = (0.6, 2.2). This observation is in line with our results given
in Table 1 and indicates that applying the method of moment approach leads
to consistent parameter estimates. However, our result emphasizes that the
shape of the contour plot is flat for specific combinations of δ and β, i.e. which
still indicates the existence of wide confidence bands. Note that the value of
the loss function increases dramatically if δ and β deviate strongly from their
estimated values. In this case a trade-off arises: a high predicted subjective
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mean value requires a low degree of divergence in order to ensure a minimum
value of J . As we turn to an economical explanation, this trade-off gives rise
to the observation that the more the agents believe in a strong deviation of the
future output gap from the corresponding steady state, the more precise this
forecast must be (cf. (δ, β) = (0.4, 2.8) in the parameter space). In the same
vein, an expected low value of the future output gap allows for more forecast
uncertainty (cf. (δ, β) = (1, 1.4) in the parameter space). We conclude that the
emotional state, which indicates a high degree of optimism (and pessimism), is
associated with a strong belief in the truth of this projection.18

Figure 4 and 5 show that the minimum of the loss function is given by a value
of the memory parameter ρ equal to zero in conjuncture with the estimated
values of β and δ around 2.2 and 0.6 respectively. This result confirms the
estimate of ρ given in Table 1 and strengthens our argumentation in section 4
since strict forgetfulness holds as a requirement for observing animal spirits.

Finally we claim that even in the absence of statistical accuracy (i.e. the
case of wide confidence bands) when applying the method of moment approach,
results from a MC study and a sensitive analysis lead to strong confidence in
the parameter estimates regarding the behavioral parameter given in section 4.

6 Conclusion

In this paper, we attempt to provide empirical evidence for the behavioral as-
sumption in the model of De Grauwe (2011). The validity of the model assump-
tion on the cognitive limitation (e.g. because of different individual emotional
states) is empirically tested using the historical Euro area data. We attempt

18Remember that these observations do not hold necessarily in general, since in our sensitivity
analysis we fix all remaining parameters in the model to the values given in the second column
of Table 1.
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to identify the so-called behavioral parameters, which account for animal spir-
its in the Euro Area; i.e. we hypothesize that historical movements of macro
dynamics are influenced by the waves of optimism and pessimism.

To examine the effects of the group behavior on the output and inflation
gap, we follow the behavioral approach of De Grauwe (2011), who assumes
divergence in beliefs about the future value of both variables. The corresponding
decision rules for market optimism and pessimism are given by the forecast
performance of the agents from the discrete choice theory. To see this, we
contrast a standard hybrid version of the three-equations New-Keynesian model
of rational expectations with a version of the same model where we assume
bounded rationality in expectation formation processes using the moment-based
estimation.

Our main empirical findings show that a bounded rationality model with
cognitive limitation provides fits for auto- and cross-covariances of the Euro
Area data, which are slightly better or equal to a model where rational expec-
tations are assumed - even though we are not judging the performance of both
models relative to each other. Therefore our empirical results of the BR model
offer some new insights into expectation formation processes for the Euro Area.
First, over the whole time interval the agents had expected moderate deviations
of the output gap from its steady state value with low uncertainty. Second, in
the absence of rational behavior we find strong evidence for an autoregressive
expectation formation process regarding the inflation gap. Both observations
explain a high degree of persistence in the output gap and the inflation gap.
Based on discrete choice theory and the self-selection process of the agents, we
found that animal spirits strengthen the optimistic’s belief about the future
output gap to diverge in the historical Euro Area data.

To the best of our knowledge, such kind of experiments have not been done
before in the literature. However, the empirical test of bounded rationality
(viz. the assumption of the divergence in beliefs) has to be treated carefully be-

22



cause the all parameter (especially the behavioral ones) within the non-linear
modeling approach are generally poorly determined, i.e. wide confidence bands
occur. We delve into this problem by examining the finite size properties of the
moment-based procedure through a Monte Carlo study and a sensitivity anal-
ysis. In the end, we provide empirical evidence in support of De Grauwe (2011,
fn. 4) for understanding the group’s over- and under-reaction to the economy.
In order to identify the effects of individual expectation formation processes
on the economy, in further research, the decision rules i.e. the transition rules
from one state of the economy to another can be calculated based on survey
data (for example see Lux (2009)). Thus these probabilities are then treated
as exogenous and (in contrast to the De Grauwe model) are computed under
consideration of the underlying time series using discrete choice theory. Finally
and only if the estimation of small-scale models is considered to be satisfactory,
one can further continue the model estimation with much more richer models
like e.g. the medium-scale version developed by the Smets and Wouters (2005,
2007). We leave these issues to future research.
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Appendix

A1: Solution of the NKM

In general, all model specifications are described by the following system in
canonical form:

AXt +BXt−1 + CXt+1 + εt = 0 (28)

where

Xt =




yt
π̂t
r̂t


 , Xt−1 =




yt−1

π̂t−1

r̂t−1


 , Xt+1 =




Ẽj
t yt+1

Ẽj
t π̂t+1

Ẽj
t r̂t+1


 , εt =




εy,t
επ̂,t
εr̂,t




The corresponding system matrices are given by:

A =




1 0 τ
−λ 1 0

−φr̂φy −φr̂φπ 1


 , B =




− χ
1+χ 0 0

0 − α
1+αν 0

0 0 −(1− φr̂)


 (29)

and

C =




− 1
1+χ −τ 0

0 − ν
1+αν 0

0 0 0


 . (30)

Recall that for the rational expectations model we assume

ẼRE
t yt+1 = Etyt+1

ẼRE
t π̂t+1 = Etπ̂t+1

and for the bounded rationality model we assume
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ẼBR
t yt+1 = (αO

y,t − αP
y,t)dt

ẼBR
t π̂t+1 = αtar

π̂,t
¯̂π + αext

π̂,t π̂t−1

where we also consider equations (10) to (18) with ¯̂π = 0. In the following we
solve for the dynamics of the system (28) In case of the BR model, the solution
is given by

Xt = −A−1[BXt−1 + CXt+1 + εt] (31)

where the matrix A is of full rank, i.e. its determinant is not equal to zero, given
the parameter estimates in section 4. Under consideration of the heuristics for
the forecasts regarding the output and inflation gap expectations, the forward
looking term Xt+1 is substituted by the equivalent expressions for the discrete
choice mechanism given in section 2. It follows that the model becomes purely
backward-looking and thus (31) can be solved by backward-induction.

In contrast, the RE model is both backward- and forward-looking. Therefore
we apply the method of undetermined coefficients in order to solve the model.
We claim that the law of motion which describes the analytical solution is given
by

Xt = ΩXt−1 +Φεt (32)

where Ω ∈ R
3×3 and Φ ∈ R

3×3 are the solution matrices. The former is a stable
matrix as long as (similar to the matrix A in the BR case) its determinant is
not equal to zero, which ensures the invertibility of Ω. Again, this is confirmed
given the estimation results in section 4. We substitute (32) into (28) which
yields

A(ΩXt−1 +Φεt) +BXt−1 + C(ΩXt +ΦEtεt+1) + εt = 0.

This is equivalent to

A(ΩXt−1 +Φεt) +BXt−1 + C(Ω2Xt−1 +ΩΦεt +ΦEtεt+1) + εt = 0.

Hence the reduced form can be rewritten as

(CΩ2 +AΩ+B)Xt−1 + (AΦ+ CΩΦ+ I)εt = 0 (33)

with I being the identity matrix. Note that εt ∼ N(0, σ2
z ) with z = {y, π̂, r̂}

and thus Etεt+1 = 0. In order to solve equation (33) all the terms in brackets
must be zero.19 Thus the solution matrices can be uniquely determined. We
may write that as

CΩ2 +AΩ+B = 0 ⇒ Ω = −(CΩ+A)−1B. (34)

In order to solve the quadratic matrix equation (34) numerically, we employ
the brute force iteration procedure mentioned in Binder and Pesaran (1995, p.
155, fn 26). Hence an equivalent recursive relation of (34) is given by

Ωn = −(CΩn−1 +A)−1B (35)

19Obviously the trivial solution Xt−1 = Γt = εt = 0 is discarded.
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with an arbitrary number of iteration steps N where n = {1, 2, ..., N}. We
define Ω0 = ξI with 0 ≤ ξ ≤ 1. The iteration process (35) proceeds until
||Ωn−Ωn−1|| < ξ where ξ is an arbitrarily small number. Given the solution of
Ω, the computation of Φ is straightforward:20

AΦ+ CΩnΦ+ I = 0 ⇒ Φ = −(A+ CΩn)
−1. (36)

A2: Delta Method and Confidence Interval for Auto- and Cross-

covariances

The Delta method is a common technique for providing the first-order ap-
proximations to the variance of a transformed parameter; see chapter 5 of
Davidson and Mackinnon (2004) among others. In the study, we use the Delta
method when computing the standard errors of the estimated auto- and cross-
covariances of the data. The covariance is defined as follows:

γij(h) = E[(Xi,t − µi)(Xj,t+h − µj)
′], t = 1, · · · , T (37)

where γij is the auto-covariance function when i = j. Otherwise γij denotes

the cross-covariance between Xi,t and Xj,t+h. h is the lag in data and µi(or µj)
is the sample mean of the variable Xi(or Xj). The covariance function in
Equation (37) proceeds with a simple multiplication:

γij(h) = E[Xi,t ·X ′
j,t+h]− µi · E[X ′

j,t+h] (38)

= µij − µi · µj

where µij denotes E[Xi,t · X ′
j,t+h]. Now we see that γij(h) is a transformed

function of the population moments µi, µj and µij. Denote the vector µ as the
collection of the moments: µ = [µi µj µij ]. We differentiate the covariance
function with respect to the vector µ:

D =
∂γij(h)

∂µ
=




∂γij (h)
∂µi

∂γij (h)
∂µj

∂γij (h)
∂µij



=




−µj

−µi

1


 (39)

Therefore the Delta method provides the asymptotic distribution of the estimate

γ̂ij by matching the sample moments of the data.

√
T (γij − γ̂ij) ∼ N(0,D′SD). (40)

For some suitable lag length q, we use a common HAC estimator of Newey

20Note that the solution under the method of undetermined coefficients equals the one under
the method used in Matlab Dynare. This is confirmed when comparing the outcome for (34)
and (36) computed by using Matlab Dynare to the results one would get by applying the
brute force iteration procedure. Since this procedure is much more convenient to use within
our estimation routine, we abstain from using Dynare.
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and West (1994) when estimating the covariance matrix of sample moments.
Specifically, we follow the advice in Davidson and MacKinnon (2004, p.364)
and scale q with T 1/3. Accordingly we may set q = 5 for the Euro area data.

Σ̂µ = Ĉ(0) +

q∑

k=1

(
1− k

q + 1

)
[Ĉ(k) + Ĉ(k)′] (41)

Ĉ(k) =
1

T

T∑

t=k+1

[f(zt)− µ̂][f(zt−h)− µ̂]′

where f(zt) = [Xi, Xj , Xi · Xj]. We use the optimal weight matrix S = Σ̂−1
µ

in estimating the covariance matrix of moments. Let sγ be
√
D′SD. Then the

95% asymptotic confidence intervals for auto- and cross-covariance estimates
become:

[γij − 1.96 · sγ , γij + 1.96 · sγ ] (42)

A3: Large-scale Simulation Study for the BR Model

We report the results of a simulation study for the BR model when a large
simulation size is used; S=100. At present, we see that the model estimates
using a large simulation size have slightly smaller values for the RMSEs than
ones from a small simulation size in the section 4.3. However, the simulation
studies are computationally expensive as the sample size increases. Note here
that we only report the case of T = 100.
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Table 4: Monte Carlo Study for the BR Model

T=100

Label True (θ0) Mean RMSE

α 0.200 0.226 0.260
χ 1.000 0.709 0.421
τ 0.385 0.939 1.164
κ 0.215 0.234 0.098
φy 0.675 0.722 0.165
φπ̂ 1.100 1.113 0.143
φr̂ 0.670 0.678 0.059
σy 0.825 0.933 0.268
σπ̂ 0.740 0.690 0.116
σr̂ 0.240 0.165 0.138
β 2.250 2.581 1.569
δ 0.650 1.179 1.122
ρ 0.000 0.212 0.291

J 28.42

Note: ν is set to the value of 0.99. The reported statistics are based on 200
replications. RMSE is the root mean square error.
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