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Abstract

This paper proposes a dynamic multi-agent model of a banking system with

central bank. Banks optimize a portfolio of risky investments and riskless

excess reserves according to their risk, return, and liquidity preferences. They

are linked via interbank loans and face stochastic deposit supply. Evidence

is provided that the central bank stabilizes interbank markets in the short-

run only. Comparing different interbank network structures, it is shown that

money-center networks are more stable than random networks. Systemic risk

via contagion is compared to common shocks and it is shown that both forms

of systemic risk require different optimal policy responses.
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1. Introduction

The recent financial crisis has highlighted the necessity to understand sys-

temic risk both qualitatively and quantitatively in order to safeguard finan-

cial stability. Bandt et al. (2009) provide a categorization of systemic risks,

distinguishing between a broad and a narrow sense. In their nomenclature,

contagion effects on interbank markets pose a systemic risk in the narrow
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sense, whereas the broad sense of systemic risk is characterized as a common

shock that affects many institutions at once. The crisis has shown that sys-

temic risk not only can take many forms, but is also highly dynamic: slowly

building up in normal times, but rapidly emerging during times of distress.

The insolvency of the US investment bank Lehman Brothers in September

2008 marked the tipping point between the build up and rapid manifestation

of systemic risks and lead to a freeze in interbank markets. As a consequence,

the risk premia for unsecured interbank loans increased drastically, which re-

sulted in a massive impairment of banks’ liquidity provision. Governments

and central banks were forced to undertake unprecedented non-standard mea-

sures to reduce money market spreads and ensure liquidity provision to the

banking system. This shows that central banks are key actors for the func-

tioning of interbank markets, even though they do not directly participate in

them. To motivate central bank interventions, Allen et al. (2009) and Freixas

et al. (2010) show that central bank intervention can increase the efficiency

of interbank markets. It is thus clear, that every realistic model of interbank

markets has to feature the central bank as one key actor.

Interbank markets exhibit what Haldane (2009) denotes as a knife-edge, or

robust-yet-fragile property. In normal times, the connections between banks

lead to an enhanced liquidity allocation and increased risk sharing amongst

financial institutions. This was shown by Allen and Gale (2000) who ex-

tend the classical bank-run model by Diamond and Dybvig (1983) and show

that highly interconnected banking systems are less prone to bank-runs. In

times of crisis, however, the same interconnections can amplify shocks that
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spread through the system. This was shown i.e. by Gai and Kapadia (2008),

who investigate systemic crises with a network model and show that on the

one hand, the risk of systemic crises is reduced with increasing connectivity

on the interbank market. On the other hand, however, the magnitude of

systemic crises increases at the same time. This knife-edge property of inter-

bank markets can be attributed to a counterparty risk externality. Acharya

and Bisin (2010) compare over-the-counter (OTC) and centralized clearing

markets in a general equilibrium model. They show that the intransparency

of OTC markets is ex-ante inefficient and attribute this to a counterparty

risk externality. This externality can best be illustrated in a small example.

Assume a simple banking network that consists of three banks (A,B, and C)

where bank A has issued uncollateralized interbank loans to banks B and

C. The interest rate on the interbank loans will include a risk premium to

capture counterparty risk. Now assume that B has issued another interbank

loan to C. This will increase the counterparty risk of bank B, as B is now

vulnerable to a default of bank C. However, bank A is not aware of this in-

crease and will thus underprice the counterparty risk. Thus, the structure of

financial networks and especially interbank networks is relevant for the anal-

ysis of systemic risk. Taking this into account, the question arises, if there

exist network structures that are less prone to the counterparty externality

and hence more resilient to financial distress.

The counterparty risk externality makes it clear that the network structure

of financial system plays an important role when assessing systemic risk. An

overview of the existing literature on financial networks can be found i.e. in
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Allen et al. (2010). The network structure of interbank markets can be best

captured in an exposure matrix where the issuance of a loan from bank i

to bank j is denoted as the loan size in row i and column j. Using such

a matrix, Eisenberg and Noe (2001) show that a unique clearing payment

vector exists and analyze the spreading of contagious defaults in general net-

work topologies. The difference to this paper is that we develop a dynamic

model of cascading bank defaults, while Eisenberg and Noe (2001) calculate

the impact of a default in a static network structure. Empirical analyses

of the interbank network structure exist for for a number of countries (see

i.e. European Central Bank (2010) for a recent overview). It is shown that

interbank networks often exhibit a scale-free topology, i.e. they are charac-

terized by few money center banks with many interconnections and many

small banks with few connections. Sachs (2010) follows the static approach

of Eisenberg and Noe, but also compares contagion effects in scale-free net-

works and random networks and finds that contagion is more pressing in

scale-free networks. What is missing in the literature, however, is a dynamic

analysis of the financial stability properties of different network topologies.

The crisis revealed that there also exist other externalities besides the coun-

terparty risk externality. One of them being a correlation externality between

banks’ portfolios. Securitization was designed to distribute risks from within

the banking system to investors outside the banking system. A thorough

analysis, however, shows that a significant part of the securitized risk was

still residing within the banking system at the peak of the crisis (see i.e. Kr-

ishnamurthy (2008)). As a consequence, a strong correlation between banks’
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assets arised. As banks are unaware of the portfolio of competing banks,

they cannot assess this correlation and thus choose non-optimal levels of cor-

relation for their portfolios. This externality could thus be best described as

a correlation externality. A large extend of the literature on systemic risk

in interbank markets has focused on the analysis of contagion effects (i.e.

studying the counterparty risk externality). Recently, more attention has

been given to the correlation externality and the analysis of common shocks

as sources of systemic risk. Acharya and Yorulmazer (2008) point out how

banks are incentivized to increase the correlation between their investments

and thus the risk of an endogenous common shock in order to prevent costs

arising from potential information spillovers. The increasing correlation in

the financial sector is also verified empirically. De Nicolo and Kwast (2002)

analyze the increase in the correlation between large and complex financial

organizations during the 1990s, a development that was further fueled by

securitization. The new insights on common shocks give rise to the question

which form of systemic risk poses the greater threat to financial stability: in-

terbank contagion caused by the counterparty externality, or common shocks

caused by the correlation externality. Thus far, no comparison of the differ-

ent systemic risk manifestations in a single model has been conducted in the

literature. This paper aims to close this gap by explicitely comparing the

impact of different shocks resulting from the two externalities.

One particularly useful class of models to analyze the above mentioned ques-

tions are multi-agent simulations. Iori et al. (2006) develop a network model

of a banking system, where agents (banks) can interact with each other via
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interbank loans. The balance sheet of banks consists of risk-free investments

and interbank loans as assets, and deposits, equity and interbank borrow-

ings as liabilities. Banks channel funds from depositors towards productive

investment. They receive liquidity shocks via deposit fluctuations and pay

dividends if possible. Nier et al. (2008) describe the banking system as a

random graph where the network structure is determined by the number of

nodes (banks) and the probability that two nodes are connected. The banks’

balance sheet consists of external assets (investments) and interbank assets

on the asset side and net worth, deposits, and interbank loans as liabilities.

Net worth is assumed to be a fixed fraction of a bank’s total assets and de-

posits are a residual, designed to complete the bank’s liabilities side. Shocks

that hit a bank and lead to its default are distributed equally amongst the

interbank market. The authors find, that (i) the banking system is more re-

silient to contagious defaults if its banks are better capitalized and this effect

is non-linear; (ii) the effect of the degree of connectivity is non-monotonic;

(iii) the size of interbank liabilities tend to increase the risk of a knock-on

default; and (iv) more concentrated banking systems are shown to be prone

to larger systemic risk. More recently, Ladley (2011) analyzes the impact of

the interbank network heterogeneity on systemic risk in a multi-agent set-

ting. The balance sheet of banks consists of equity, deposits, cash reserves,

loans to the non-bank sector and interbank loans. Ladley considers risky

investment opportunities and explicitely models how banks attract deposits

by choosing their offered deposit interest rates. Banks determine the optimal

structure of their portfolio via a genetic algorithm. He finds that that for

small shocks, high interconnectivity helps stabilizing the system, while for
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large shocks high interconnectivity amplifies the initial impact.

This paper wants to answer the aforementioned questions about the impact of

the network structure on financial stability by developing a dynamic model

of a banking system. Banks optimize a portfolio of risky investments and

riskless excess reserves. Risky investments are long-term investment projects

that fund an unmodelled firm sector while riskless excess reserves are short-

term and held at the deposit facility of the central bank. Banks face a

stochastic supply of household deposits and stochastic returns from risky in-

vestments. This gives rise to liquidity fluctuations and initiates the dynamic

formation of an interbank loan network. Banks have furthermore access to

central bank liquidity if they can provide sufficient collateral. This model is

used to first analyze the impact that the provision of central bank liquidity

has on financial stability. It is shown that the central bank can stabilize

the financial system in the short-run. In the long-run, however, the system

always converges to the equilibrium state. Possible network structures will

be given at the beginning of each simulation. They reflect contractual agree-

ments amongst banks and determine the set of possible interbank loans. The

realized network structure at each point in time is a subset of the possible

network structure (i.e. the set of existing edges at any point in time is a

subset of the set of possible edges). This closely resembles the situation in

reality, where the day-to-day topology of interbank networks also varies from

the monthly or quaterly aggregated network structures that are analyzed in

the literature. Different possible network structures are compared, and it is

shown that in random graphs, the relationship between the degree of inter-

7



connectivity and financial instability is non-monotonic. Scale-free networks

are seen to be more stable than small-world networks, which in turn tend

to be more stable than random networks. Thus, the effect of contagion is

exagerrated in the literature, as most papers assume random networks and

most real-world interbank networks are scale-free. The model captures key

effects of the dynamics of interbank networks and can thus be used to analyze

the impact of different externalities on financial stability. The counterparty

risk externality is compared to the correlation externality and it is shown

that, contrary to their importance in the literature, common shocks are not

subordinate to interbank contagion. Finally, a number of policy conclusions

for the optimal reaction to financial crises, as well as for the monitoring and

regulation of systemic risk are drawn from the model.

The remainder of this paper is organized as follows. After this introduction,

section two describes the dynamic model that has been used to analyze the

aforementioned questions. Section three will present the main results, while

section four derives some policy implications and concludes.

2. The Model

This section wants to outline some key features that all models of systemic

risk should incorporate and develop a dynamic model of a banking system

that can be used to analyze the impact of the interbank network structure on

financial stability. Firstly, deposit fluctuations have to be included for two

reasons: (i) Because of the maturity transformation that banks perform and

since deposits usually have a short maturity, deposit fluctuations can lead to
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illiquidity. Banks that become illiquid will have to liquidate their long-term

investments at steep discounts (for a model that describes this mechanism,

see i.e. Uhlig (2010)). Due to marked-to-market accounting, these steep

discounts will lead to losses in banks’ trading books and have to be compen-

sated by banking capital. Thus, illiquidity can lead to insolvency. (ii) As

deposit fluctuations are generally considered to be one of the reasons why

banks engage in interbank lending (see i.e. Allen and Gale (2000)), they have

to be included into all models of systemic risk. Without deposit flucutations

as a driving force for the formation of interbank networks, it is impossible

to describe the counterparty risk externality in a dynamic setting. Secondly,

as fluctuations in investment returns have to be compensated by banking

capital, risky investments are a major cause of bank insolvencies. Without

risky investments, it is impossible to model the correlation externality as it

arises precisely in a situation when the returns of risky assets of a number of

banks have negative realizations at the same time. In order to model com-

mon shocks, risky investments have thus to be taken into account.

Iori et al. (2006) and Nier et al. (2008) develop multi-agent models of a

banking system, but assume a risk-free investment opportunity. Nier et al.

(2008) further assume deposits to be residual. I follow both papers in some

aspects and develop a network model of interbank markets. However, I ex-

plicitely allow the possibility of risky investments and deposit fluctuations.

I furthermore include a central bank in the model, since it is evident from

the literature that monetary policy has a large influence on the stability of

interbank markets. This model allows the investigation of direct contagion
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effects as well as common shocks. This is another difference to the existing

literature, which exclusively focuses on individual forms of systemic risk.

2.1. Balance Sheets

The balance sheet of a bank k holds risky investments Ik and riskless excess

reserves Ek as assets at every point in (simulation-) time t = 1 . . . τ . The

investments of bank k have a random maturity1 τ kI > 0 and I assume that

each bank finds enough investment opportunities according to its preferences.

The bank refinances this portfolio by deposits Dk (which are stochastic and

have a maturity of zero), from which it has to hold a certain fraction rDk of

required reserves at the central bank, fixed banking capital BCk (which is

assumed to be held in a highly liquid form), interbank loans Lk and central

bank loans LCk. Interbank loans and central bank loans are assumed to have

a maturity of τ kL = τ kLC = 0. The maturity mismatch between investments

and deposits is the standard maturity transformation of commercial banks.

Interbank loans can be positive (bank has excess liquidity) or negative (bank

has demand for liquidity), depending on the liquidity situation of the bank

at time t. The same holds for central bank loans, where the bank can use

either the main refinancing operations to obtain loans, or the deposit facility

to loan liquidity to the central bank. The balance sheet of the commercial

bank therefore reads as:

Ikt + Ek
t = (1− r)Dk

t +BCk
t + Lkt + LCk

t (1)

The interest rate for deposits at a bank is rd and the interest rate for central

bank loans is rb. Note that there is no distinction between an interest rate

1Maturity τ implies that the asset matures in τ + 1 update steps.
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for the lending and deposit facility and therefore the interest rate on the

interbank market will be equal to the interest rate for central bank loans.

The banks decide about their portfolio structure and portfolio volume. A

constant relative risk aversion (CRRA) utility function is assumed to model

the bank’s preferences:

uk =
1

1− θk

(
V k(1 + λkµk − 1

2
θk(λk)2(σk)2)

)(1−θk)

(2)

where λk is the fraction of the risky part of the portfolio, µk is the expected

return of the portfolio and θk is the banks risk aversion parameter. V k
t =

Ikt +Ek
t denotes the bank’s portfolio volume. The risky part of the portfolio

follows from utility maximisation and reads as:

(λk)∗ = min

{
µk

θk(σ2)k
, 1

}
∈ [0, 1] (3)

The portfolio volume can be obtained by similar measures as:

(V k)∗ =

[
1

rb

((
1 + λkµk − 1

2
θk(λk)2(σ2)k

)(1−θk)
)]1/θk

(4)

where rb denotes the refinancing cost of the portfolio. Since banks obtain

financing on the interbank market and at the central bank at the same in-

terest rate, this refinancing cost is equal to the main refinancing rate. It is

possible to introduce a spread between the lending and deposit facility and

therefore allowing the interest rate on the interbank market to stochastically

vary around the main refinancing rate. If a bank now plans its optimal port-

folio volume, it calculates with a planned refinancing rate. This refinancing

rate follows from the banks plan about how much interbank loans it wants
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Figure 1: Interaction dynamics of the model. The private sector (household/firms), the

banking sector (commercial banks) and the central bank interact via the exchange of

deposits, investments, loans, excess- and required reserves and central bank loans. Arrows

indicate the direction of fund flows.

to obtain on the interbank market at a planned refinancing rate and how

much central bank loans it plans to obtain at the main refinancing rate. If

this plan cannot be realized (e.g. if a bank’s liquidity demand is unsatis-

fied on the interbank market), banks make a non-optimal portfolio choice.

This possibility is excluded for the sake of simplicity. Note, that a market

for central bank money is not explicitely modelled. The central bank rather

accomodates all liquidity demands of commercial banks, as long as they can

provide the neccessary securities. This assumption is not unrealistic in times

of crises, as for example the full allotment policy of the ECB at the peak of

the crisis shows.
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2.2. Update Algorithm

In the simulation I have implemented an update algorithm that determines

how the system evolves from one state to another. The algorithm is divided

up into three phases that are briefly described here. Every update step is

done for all banks for a given number of sweeps. At the beginning of phase 1

the bank holds assets and has liabilities from the end of the previous period:

Ikt−1 + Ek
t−1 + rDk

t−1 = Dk
t−1 +BCk

t−1 + Lkt−1 + LCk
t−1 (5)

where an underline denotes realized quantities. In period 0 all banks are

endowed with initial values. The update step starts with banks getting the

required reserves rDk
t−1 and excess reserves Ek

t−1 plus interest payment from

the central bank (it is assumed that for both required and excess reserves an

interest of rb is paid). The banks obtain a stochastic return for all invest-

ments Ikt−1 which might be either positive or negative. The firms furthermore

pay back all investments Ikf that were made in a previous period and have a

maturity of τ kI = 0. The banks then pay interest for all deposits that were

deposited in the previous period. After that the banks can either receive fur-

ther deposits from the households, or suffer deposit withdrawings ∆Dk
t . At

the end of the first period, all interbank and central bank loans plus interests

are paid either to, or by bank k.

At the beginning of phase 2, the bank’s liquidity Q̂k is therefore given as:

Q̂k
t = (1 + rb)

[
rDk

t−1 + Ek
t−1
]

+ µkIkt−1 + Ikf − rdDk
t−1 ±∆Dk

t (6)

−(1 + rb)
[
Lkt−1 + LCk

t−1
]

+BCk
t−1
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where the banking capital has to be taken into account as it was assumed to

be highly liquid. All banks with Q̂k
t < 0 are marked as illiquid and removed

from the system. Banks that pass the liquidity check now have to pay re-

quired reserves rDk
t to the central bank.

In phase 3 the bank k determines its planned level of investment Ikt =

(λk)∗(V k)∗ and excess reserves Ek
t = (1− (λk)∗)(V k)∗ according to equations

(3) and (4). From this planned level and the current level of investments (all

investments that were done in earlier periods and have a maturity τ kI > 0),

as well as the current liquidity (6) the bank determines its liquidity demand

(or supply). If a bank has a liquidity demand, it will go first to the interbank

market, where it asks all banks i that are connected to k (denoted as i : k),

if they have a liquidity surplus. In this case the two banks will interchange

liquidity via an interbank loan. The convention is adpotet that a negative

value of L denotes a demand for liquidity and therefore the interbank loan

demand of bank k is given by:

Lkt = Q̂k
t − Ikt (7)

From this, one can obtain the realized interbank loan level, via the simple

rationing mechanism:

Lkt = min

L
k
t , −

∑
i:k L

i
t | Lit · Lkt < 0 ; if Lkt > 0

−Lkt ,
∑

i:k L
i
t | Lit · Lkt < 0 ; if Lkt < 0

 (8)

Now there are three cases, depending on the bank’s liquidity situation. If a

bank has neither a liquidity demand nor excess liquidity, it will not interact
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with the central bank and this step is skipped. However, if the bank still has

a liquidity demand, it will ask for a central bank loan:

LCk
t = Lkt − Lkt (9)

The central bank then checks if the bank has the neccessary securities and if

so, it will provide the loan:

LCk
t = max

(
LCk

t ,−αkIkt−1
)

(10)

where αk ∈ [0, 1] denotes the fraction of investments of bank k that are ac-

cepted as securities by the central bank. If a bank has insufficient securities,

the central bank will not provide the full liquidity demand and the bank has

to reduce the planned investment and excess reserve level. If the bank has

no securities (no investments Ikt−1), it cannot borrow from the central bank.

This rationing mechanism maps planned investment levels to realized ones.

The second case is that a bank has a large liquidity surplus even if all planned

investments can be realized. In this case, the bank is able to pay dividends

Akt and the dividend payment is determined by:

Akt = min
{
LCk

t , β
kIkt
}

(11)

where βk ∈ [0, 1] is the dividend level of bank k. The dividend level will

typically be very close to 1 as shareholders will push the bank to rather pay

dividends than use the money to deposit it at the central bank at low interest

rates. The remaining:

LCk
t = LCk

t − Akt (12)
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is transferred to the central bank’s deposit facility. Finally the realized in-

vestments are transferred to the firm sector and the realized excess reserves

are transferred to the central bank.

These steps are done for all k = 1 . . . N banks in the system for t = 1 . . . τ

time steps. As there are two stochastic elements in the simulation (the return

of investments and the deposit level) two channels for a banks insolvency are

modelled. The first channel is via large deposit withdrawals. As deposits are

very liquid and investments are illiquid for a fixed, but random investment

time, this maturity transformation might lead to illiquidity and therefore to

insolvency. The second channel for insolvency is via losses on investments.

If the banks banking capital is insufficient to cover losses from a failing in-

vestment, this bank will be insolvent. If a bank fails, all the banks that

have loaned to this bank will suffer losses, which they have to compensate

by their own banking capital. This is a possible contagion mechanism, where

the insolvency of one bank leads to the insolvency of other banks, that would

have survived if it was not for the first bank’s insolvency. The impact of the

contagion effect will depend on the precise network structure of the interbank

market at the time of the insolvency.

2.3. Network theory

A financial network consists of a set of banks (nodes) and a set of relationships

(edges) between the banks. Even though many relationships exist between

banks, this paper focuses on relationships that stem from interbank lending.

For the originating (lending) bank the loan will be on the asset side of its

balance sheet, while the receiving (borrowing) bank will hold the loan as
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a liability. To describe the toplogy of a network, some notions from graph

theory are helpful. The starting point is the definition of a graph.

Definition 1. A (un)directed graph G(V,E) consists of a nonempty set V

of vertices and a set of (un)ordered pairs of vertices E called edges. If i and

j are vertices of G, then the pair ij is said to join i and j.

One sometimes speaks of graphs as networks and the two terms are often

used interchangably. Since the focus of this paper is on interbank markets,

the nodes of a network are (commercial) banks and the edges are interbank

loans between two banks. For every graph a matrix of bilateral exposures

which describes the exposure of bank i to bank j can be constructed.

Definition 2. The matrix of bilateral exposures W (G) = [wij] of an inter-

bank market G with n banks is the n × n matrix whose entries wij denote

bank i’s exposure to bank j. The assets ai and liabilities li of bank i are given

by ai =
∑n

j=1wij and lj =
∑n

j=1wji.

Closely related to the matrix of bilateral exposures is the adjacency matrix

that describes the structure of the network without referring to the details

of the exposures.

Definition 3. The entries aij of the adjacency matrix A(G) are one if there

is an exposure between i and j and zero otherwise.

One can define the interconnectedness of a node as the in- and out-degree of

the node.
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Definition 4. The in-degree din(i) and out-degree dout(i) of a node i are

defined as:

din(i) =
n∑
j=1

aji , dout(i) =
n∑
j=1

aij (13)

and give a measure for the interconnectedness of the node i in a directed

graph G(V,E). The two degrees are equal for directed graphs.

One can define the size of a node i analogously to its interconnectedness in

terms of the value in- and out-degree.

Definition 5. The value in- and out-degree of a node are defined as:

vdcin(i) =

∑n
j=1wji∑n

k=1

∑n
j=1wkj

∈ [0, 1] (14)

vdcout(i) =

∑n
j=1wij∑n

k=1

∑n
j=1wjk

∈ [0, 1] (15)

and give a measure for the size of the node. The value in-degree is a measure

for the liabilities of a node while the value out-degree is a measure for its

assets.

A quantity that can be used to characterise a network is its average path

length. The average path length of a network is defined as the average

length of shortest paths for all pairs of nodes i, j ∈ V . Another commonly

used quantity to describe the topology of a network is the clustering coef-

ficient, introduced by Watts and Strogatz (1998) in their seminal work on

small-world networks. Given three nodes i, j and k, with i lending to j and

j lending to k, then the clustering coefficient can be interpreted as the prob-

ability that i lends to k as well. For i ∈ V , one define the number of opposite

edges of i as:

m(i) := |{j, k} ∈ E : {i, j} ∈ E and {i, k} ∈ E| (16)
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and the number of potential opposite edges of i as:

t(i) := d(i)(d(i)− 1) (17)

where d(i) = din(i) + dout(i) is the degree of the vertex i. The clustering

coefficient of a node i is then defined as:

c(i) :=
m(i)

t(i)
(18)

and the clustering coefficient of the whole network G = (V,E) is defined as:

C(G) :=
1

|V ′|
∑
i∈V ′

c(i) (19)

where V ′ is the set of nodes i with d(i) ≥ 2. The average path length of

the whole network can be defined for individual nodes. The single source

shortest path length of a given node i is defined as the average distance of

this node to every other node in the network.

It is possible to distinguish between a number of networks by looking at their

average path length and clustering coefficient. One extreme type of networks

are regular networks which exhibit a large clustering coefficient and a large

average path length. The other extreme are random networks which exhibit

a small clustering coefficient and a small average path length. Watts and

Strogatz (1998) define an algorithm that generates a network which is be-

tween these two extremes. They could show that the so-called “small-world

networks” exhibit both, a large clustering coefficient and small average path

length. A large number of real networks like the neural network of the worm

Caenorhabditis elegans, the power grid of the western United States, and
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the collaboration graph of film actors are small-world networks. From a

systemic risk perspective, small-world networks are interesting, as it is rea-

sonable to assume that the short average path length and high clustering of

small-world networks make them more vulnerable to contagion effects than

random or regular networks. Small-world networks can be created by using

the algorithm defined in Watts and Strogatz (1998). Starting point is a reg-

ular networks of N nodes where each node is connected to its m neighbours.

The algorithm now loops over all links in the network and rewires each link

with a probability β. For small values of β (about 0.01 to 0.2) the average

path length drops much faster than the clustering coefficient so one can have

a situation of short average path length and high clustering. A small-world

network is shown on the left side of Figure (2) with N = 50, k = 4, β = 0.05.

Another interesting class of networks are scale-free networks. They are char-

acterized by a logarithmically growing average path length and approxi-

mately algebraically decaying distribution of node-degree (in the case of an

undirected network). They were originally introduced by Barabási and Al-

bert (1999) to describe a large number of real-life networks as e.g. social

networks, computer networks and the world wide web. To generate a scale-

free network one starts with an initial node and continues to add further

nodes to the network until the total number of nodes is reached. Each new

node is connected to k other nodes in the network with a probability that

is proportional to the degree of the existing node. When thinking about fi-

nancial networks, this preferential attachment resembles the fact that larger

and more interconnected banks are generally more trusted by other market
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participants and therefore form central hubs in the network. On the right

side of Figure (2) a scale-free network with N = 50 and k = 2 is shown.

A typical feature of scale-free networks is their degree-distribution, as it typ-

ically follows a power-law. The exponent of the power-law can be measured

and characterises the network topology for different networks. Boss et al.

(2004) show that the degree distribution of the Austrian interbank market

follows a power law with an exponent of γ = −1.87. Cajueiro and Tabak

(2007) analyze the topology of the Brazilian interbank market. They show

that the Brazilian interbank market employs a scale-free toplogy and is char-

acterized by money-center banks. Iori et al. (2008) and Manna and Iazzetta

(2009) report that the Italian interbank market shows a similiar scale-free be-

haviour. Cont and Moussa (2009) show that a scale-free interbank network

will behave like a small-world network when Credit Default Swaps (CDS)

are introduced. In this sense a CDS acts as a “short-cut” from one part of

the network to another. This paper therefore focuses on these three classes

of networks (random, scale-free and small-world) to analyze their effect on

systemic risk through contagion effects.

2.4. Model Parameters

There are eighteen model parameters that control the numerical simulation.

If not stated otherwise, numerical simulations were performed with the pa-

rameters given in this section. The simulations were perfomred with N = 100

banks and τ = 1000 update steps each. Note that the simulation results do

not change if the number of banks is increased. It has to be ensured, however,

that the number is large enough so that differences in the network topologies
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Figure 2: On the left: a small-world network that was created using the algorithm of Watts

and Strogatz (1998) with N = 50, k = 4 and β = 0.05. On the right: a scale-free network

that was created using the methodology introduced in Barabási and Albert (1999) with

N = 50 and m = 2. The colour is an indication for the single source shortest path length

of the node and ranges from white (large) to red (short).

become significant enough to be visible in the simulation results. The num-

ber of update steps has to be large enough for the system to reach a steady

state from where on the results only change little. Every simulation was

repeated numSimulations=100 times to average out stochastic effects. The

interest rate deposits was chosen to be rd = 0.02 and the main refinancing

rate as rb = 0.04, which resembles the situation in the Eurozone prior to

the crisis. The required reserve rate is r = 0.02 which is in line with legal
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requirements. The interbank connection level for random graphs is denoted

as connLevel∈ [0, 1]. At a connLevel=0 there is no interbank market and

at connLevel=1 every bank is connected to every other bank. For scale-free

networks the parameters m = 1, 2, 4, 10 and for small-world networks the

parameters β ∈ [0.001, 0.1] were used.

Two sets of parameters are used to describe the influence of the real econ-

omy on the model. The first set is the probability that a credit is returned

successful, pf = 0.97. The return for a successful returned credit is taken to

be ρ+f = 0.09 and in case a credit defaults, the negative return on the invest-

ment is ρ−f = −0.05. The choice of parameters again resembles the situation

in the Eurozone and will sometimes be referred to as “normal” parameters.

As “crisis” parameters ρ+f = 0.97 and ρ−f = −0.08 were used. This implies

that banks have larger losses on their risky assets in times of crises. To plan

their optimal portfolio, the banks have an expected credit success probability

pb and expected credit return ρ+b . It is assumed that these expected values

correspond to the true values from the real economy. The optimal portfolio

structure and volume of a bank depends also on its risk aversion parameter

θ. For each bank, θ ∈ [1.67, 2.0] was chosen randomly to account for het-

erogeneity in the banking sector. The range of possible θ values is restricted

by the portfolio structure of banks. For θ > 2 and the selected parameters,

banks would hold more then 15% of their assets as risk-free assets, which is

unreasonable. For θ < 1.67, portfolio theory would imply that banks hold

no risk-free assets. The value of the factor of constant relative risk aversion

is subject to an ongoing debate, even though a value greater than one is well
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established (see i.e. the discussion in Ait-Sahalia and Lo (2000)).

Deposit fluctuations ∆Dk
t were modelled as:

∆Dk
t = (1− γk + 2γkx)Dk

t−1 (20)

with γk = 0.02 (in “normal” times) and γk = 0.1 (during a “crisis” period)

can be interpreted as a scaling parameter for the level of deposit fluctua-

tions and x being a random variable with x ∈ [0, 1]. The fraction of a banks

investments that the central bank accepts as securities is set to αk = 0.8,

assuming that banks invest only in assets which have a good rating. The

level of dividends βk determines the fraction of a banks excess liquidity (that

is free funds that are available if a bank has reached its optimal investment

volume) that the bank will pay out as dividends to shareholders. It is as-

sumed that shareholders can find more profitable investment opportunities

than the deposit facility of the central bank and will thus push for banks to

pay out as much of the excess liquidity as possible. In order to accomodate

the fact that banks in reality nonetheless make use of the deposit facility,

a dividend level of βk = 0.99 was chosen for the simulations. Note that a

change in the dividend level does not qualitatively change the results.

3. Results

To answer the question which impact central bank activity has on financial

stability, I first varied the level of collateral αk that is accepted by the cen-

tral bank in order to provide liquidity to banks. For αk = 1 the central bank

will accept all assets of commercial banks as collateral, while for αk = 0, no
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Figure 3: The effect of central bank activity for different scenarios. Top: crisis scenario.

Bottom: normal scenario. Left: number of active banks over simulation time. Right:

interbank loan volume over simulation time. The central bank activity αk varied between

αk ∈ [0.0, 1.0].

assets will be accepted. Thus, αk is used as a parameter to determine the

fraction of assets that are of high enough quality to be accepted as collat-

eral. Banks will obtain liquidity for the amount of collateral that they can

deposit at the central bank. In Figure (3) it can be seen, that a significant

stabilizing effect from the liquidity provision by the central bank is obtained

from αk ∼ 0.45. However, this effect is non-linear in αk which implies that,

on the one hand, even slight changes in the collateral requirements can have

significant stabilizing effects if performed around the critical value. On the
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other hand, even large changes can have very little effect, if performed away

from the critical value. The effect on the number of active banks is similar

for both, the normal and the crisis scenario. On the right hand side of Fig-

ure (3) the impact of the collateral requirements on the volume of interbank

loans is displayed. It can be seen, that in both scenarios an abundant provi-

sion of central bank liquidity will lead to a crowding-out effect on interbank

liquidity. It can further be seen, that a high amount of interbank liquidity

is correlated with high financial instability. This is precisely the knife-edge

property of interbank markets: if the exposures amongst banks are too large,

an initial knock-on effect will be amplified in the system.

In Figure (4) the impact of different network topologies on financial stability

in times of crisis and normal times is shown. When comparing the results

for random networks, it can be seen that the difference in network topol-

ogy is not significant during normal times.2 In times of crisis, however, the

different levels of interconnectedness come into play. Figure (4) also con-

firms the result of Nier et al. (2008), who show that the relationship between

the level of interconnectedness on interbank markets and financial contagion

is non-monotonic. It can furthermore be seen, that contagion effects tend

to be larger in in random networks than in small-world networks, where in

turn contagion effects tend to be larger than in scale-free networks. This

implies that analyses that are conducted with static random networks can

overestimate contagion effects when a dynamic model of systemic risk is used.

2And similarly for small-world and scale-free networks.
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Figure 4: The effect of different network topologies on financial stability. Left top: cri-

sis scenario and random topology. Right top: normal scenario and random topology.

Connection levels of connLevel= 0.0, 0.2, 0.4, 0.45, 0.5, 1.0 were used. Bottom left: cri-

sis scenario and small-world network with β = 0.001, 0.005, 0.01, 0.05, 0.1. Bottom right:

crisis scenario and scale-free network with m = 1, 2, 4, 10.

For increasing levels of interconnectedness in random networks, it can be

seen from Figure (4) that there exists a “tipping” point, where the networks

become endogenously instable. To better understand this, the interbank loan

volume is depicted in Figure (5). As Ladley (2011) argues, the knife-edge

property of interbank markets requires shocks to be small, in order to exihibt

a stabilizing effect. Figure (5) shows an increase in interbank market volume
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Figure 5: The effect of different network topologies on interbank loan volume. Left top:

crisis scenario and random topology. Right top: normal scenario and random topology.

Connection levels of connLevel= 0.0, 0.2, 0.4, 0.45, 0.5, 1.0 were used. Bottom left: crisis

scenario and small-world network with β = 0.001, 0.005, 0.01, 0.05, 0.1. Bottom right:

crisis scenario and scale-free network with m = 1, 2, 4, 10.

until a tipping point, where the amount of interbank loans becomes large and

contagion effects dominate. This in turn leads to an increasing number of

insolvencies that spread easier in the system if the level of interconnectedness

increases. It can also be seen from Figure (5) that the volume of interbank

markets in normal times is significantly smaller than the volume in times of

distress. This is easily understood in the model setup, as times of distress

imply larger liquidity fluctuations and therefore larger amounts of interbank
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loans issued between agents. However, this implies that interbank markets

will be more prone to contagion effects in times of high deposit and asset

return volatility. It also implies that interbank markets are more susceptible

to systemic risk when the volume of the interbank market is larger.
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Figure 6: The impact of different forms of systemic risk on financial stability and interbank

loan volume. Left: normal scenario. Right: crisis scenario. Top: number of active banks

over time. Bottom: interbank loan volume voer time. Interbank contagion: the largest

bank in the system at time t = 400 was sent into insolvency. Common shock A: all banks

suffer a common shock of 10% on all their assets. Common shock B: all banks suffer a

common shock of 20% on all their assets.

To understand the impact of different forms of systemic risk on financial sta-

bility, Figure (6) compares two different types of shocks. In the case of pure
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interbank contagion, the largest bank in the system is selected and exoge-

nously sent into default. The impact of this default on the remaining number

of active banks in the system is depicted in Figure (6) at the top. Again, it

can be seen that the impact is larger in times of distress than in normal times.

To analyze the impact such a default has on the liquidity provision in inter-

bank markets, Figure (6) shows the interbank market volume at the bottom.

When a common shock hits the system, banks with insufficient equity will go

into insolvency. While this might only be a small number of banks, a larger

number of banks become more vulnerable to deposit and asset return fluc-

tuations. As was seen in Figure (5), shocks that exceed a certain threshold

will lead to an increased number of insolvencies in the system. When banks

become more vulnerable, this threshold is reached easier and the whole sys-

tem remains unstable as long as the volume on the interbank market (and

hence the magnitude of possible shocks) will lead to increased insolvencies.

When the crisis hits, the volume of interbank transactions drops until it has

reached a level where the endogenous deposit and asset return fluctuations

will not lead to an increased number of insolvencies. Comparing the case

of common shocks to the case of interbank contagion, it can be seen that,

while the impact of a common shock on the number of active banks is more

severe than in the contagion case, the opposite holds true for interbank mar-

ket liquidity. The pure contagion case has a substantial impact on interbank

market liquidity, which on the other hand implies a smaller size of shocks

due to endogenous fluctuations.
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4. Conclusion and Policy Implications

This paper provides further evidence that central bank intervention can in-

deed alleviate financial distress and liquidity shortages on interbank markets,

at least in the short run. Even small changes in the collateral requirements

of central banks can lead to a significant enhancement of liquidity provision

on interbank markets. There is, however, a large range of required collateral

quality, where even a significant change in the collateral requirements will

not lead to a significant enhancement of liquidity provision. The simulation

results also show that an abundant provision of central bank liquidity can

lead to a crowding-out of interbank liquidity. The desired impact of central

bank activity on liquidity provision will thus be smaller in the long run. This

is confirmed by the fact that, while the central bank has a stabilizing effect on

the financial system in the short-run, the long run equilibrium will always be

the equilibrium that would have been reached without central bank activity.

The model developed in this paper allows for a deeper understanding of the

knife-edge property of interbank markets. The results indicate that there

is an upper limit of interbank loan volume for different network topologies,

where endogenous deposit and asset return fluctuations will lead to an in-

creased number of bank insolvencies. The limit itself depends on the topology

of the interbank markets and will be larger for higher interconnected bank-

ing systems. This implies that the knife-edge property of interbank markets

depends on the precise market structure and level of interconnectedness. For

higher connectivity on the interbank market, larger amounts of interbank

liquidity can be tolerated by the system without a substantial increase in
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financial fragility. However, even for complete networks, where every bank

is connected to every other bank, such an upper limit exists. In fact, for

higher interconnected networks, shocks will spread more rapid, which im-

plies a higher fragility of the system once the tipping point is reached.

Already the correlation of higher interconnectedness and increasing system

fragility makes it clear, that the topology of the interbank network is rele-

vant for the assessment of financial stability. This paper also shows that the

topology of the interbank network impacts the assessment of the long-run

stability of the banking system. This “topology effect” is more accentuated

in times of crisis, while in normal times, the topology has little impact. This

result is of particular relevance for the question which interbank network

structure is most resilient to financial distress. It turns out that networks

with large average path length are more resilient to financial distress and

that it is precisely during a crisis where the network topology matters.

Even though contagion effects are far better studied in the literature, it turns

out that common shocks pose a greater threat to financial stability. This is

also due to the knife-edge property of interbank markets. When a common

shock strikes the entire banking system, banks become more vulnerable to en-

dogenous fluctuations and occasional idiosyncractic insolvencies. This leads

to a drastic vulnerability of the entire system and a large number of bank

insolvencies. However, contagion affects interbank market liquidity more

severely than common shocks. Again, the impact of the shocks is larger dur-

ing times of distress, which holds especially true for the impact of contagious
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defaults on interbank liquidity provision.

From the perspective of monitoring systemic risk, this paper provides evi-

dence that the topology of the interbank network has to be taken into ac-

count. The interbank network topology, however, is highly dynamic and

varies from day to day. This implies that further analyses of this dynamic

behaviour are necessary in order to understand the full impact of the network

topology on the propagation of shocks.

The results in this paper also have implications for the optimal reaction of

central banks to financial crises, as different forms of systemic risk have a

different impact on the financial system. In the case where systemic risk

is mainly mainfesting in the form of contagion, central banks should resort

to providing short-term liquidity to the financial system. Because of to the

crowding-out of interbank liquidity by abundant central bank liquidity, how-

ever, this liquidity provision should be short- or medium-term only. In the

case where systemic risk is mainly manifesting in the form of a common

shock, the optimal policy reaction is to re-capitalize the financial system.

Only a strengthening of the banks’ equity will make them more resilient to

endogenous fluctuations. This is especially relevant, as the reduction in in-

terbank lending is smaller in the case of a common shock and the simulation

results indicate a direct relation between high interbank lending (with respect

to the resilience of each individual bank, i.e. the banks’ capital buffer) and

financial fragility. Thus, a better understanding of all forms of systemic risk

is required in order for policy makers to find appropriate crisis reactions.
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