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Abstract

This paper investigates how the ordering of variables affects properties of the

time-varying covariance matrix in the Cholesky multivariate stochastic volatil-

ity model. It establishes that systematically different dynamic restrictions are

imposed when the ratio of volatilities is time-varying. Simulations demonstrate

that estimated covariance matrices become more divergent when volatility clusters

idiosyncratically. It is illustrated that this property is important for empirical ap-

plications. Specifically, alternative estimates on the evolution of U.S. systematic

monetary policy and inflation-gap persistence indicate that conclusions may criti-

cally hinge on a selected ordering of variables. The dynamic correlation Cholesky

multivariate stochastic volatility model is proposed as a robust alternative.
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1 Introduction

Technological innovations, secular trends and policy changes are a few of many

factors that shape economic interactions and business cycles over time. To detect and

analyze their dynamic relations, time-varying parameter VARs with Cholesky multi-

variate stochastic volatility (TVP-VAR with CMSV) developed by Primiceri (2005)

and Cogley and Sargent (2005) have become a widely established tool in the literature.

In fact, a vast body of empirical research has been generated using this class of models.1

Even though it is well documented that the time-varying covariance matrix may be

sensitive to the ordering of variables in the CMSV model,2 this property is often ignored

and left unchecked in many empirical studies.3 Such an approach, however, runs the

risk of empirical results hinging on a selected ordering of variables and of alternative

estimates leading to different conclusions. This paper argues that this property has not

been sufficiently explored and must not be ignored in empirical applications.

To illustrate the extent of this type of model uncertainty, Figure 1 shows alternative

posterior median estimates of volatilities and covariances of the reduced-form residuals

in Primiceri’s (2005) application.4 The figure shows that estimated covariances are sen-

sitive and substantially different across alternative orderings of variables. Specifically,

estimates strongly diverge during the stagflation period when the reduced-form residu-

als exhibit some mildly non-common volatility pattern. This is an undesirable feature

as the impulse response functions analyzed in Primiceri’s (2005) application depend on

both volatilities and covariances. To understand the nature behind the difference across

estimates, this paper investigates how the ordering of variables affects properties of the

time-varying covariance matrix in the CMSV model.

This paper makes several novel contributions. First, it identifies a time-varying ratio

of reduced-form volatilities as to how alternative orderings impose different dynamic

restrictions on the time-varying covariance matrix. In the CMSV model, the parameter

1For instance, see the follow-up work of Benati and Surico (2008); Gaĺı and Gambetti (2015) on

U.S. monetary policy; Gali and Gambetti (2009); Benati (2008) on great moderation; Baumeister and

Peersman (2013a); Baumeister and Peersman (2013b) on oil markets; Gambetti and Musso (2017);

Prieto, Eickmeier, and Marcellino (2016) on macro-finance relations; and Mumtaz and Zanetti (2013);

Cogley, Primiceri, and Sargent (2010) on TVP-VARs with more complex CMSV versions.

2See Primiceri (2005); Cogley and Sargent (2005); Asai, McAleer, and Yu (2006).

3 Koop, León-González, and Strachan (2009); Nakajima and Watanabe (2011); Lopes, McCulloch,

and Tsay (2012); Chan, Doucet, León-González, and Strachan (2018); Bognanni (2018) are exceptions.

4Alternative estimates are based on Algorithm 2 in Del Negro and Primiceri (2015) and are obtained

from TVP-VARs with CMSV, in which the order of variables has been exchanged.
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Figure 1: Estimated contemporaneous reduced-form covariance matrices

The figure shows the posterior median of the covariance (cov) and volatility (vol) of the

reduced-form residual of inflation (πt), unemployment (ut) and the interest rate (it) for

all possible orderings in the TVP-SVAR with CMSV.

of contemporaneous relation evolves linearly for a specific variable ordering. When the

order of variables is exchanged, the implied dynamics of this parameter are nonlinear.

They are determined by the correlation process and a time-varying ratio of volatilities,

which is log-normally distributed. These alternative properties of the state process

cannot be well captured by an analogously set-up CMSV model and, thus, the model

imposes alternative dynamic restrictions on the time-varying covariance matrix.
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Moreover, assuming an alternative data generating process that separates volatility

and correlation dynamics, the covariance estimates of a CMSV model are systematically

different across alternative orderings. This occurs due to the ratio of volatilities driving

the parameter of contemporaneous relation being inverted in a reordering, which is asso-

ciated with different dynamic properties. Monte Carlo simulations show that estimates

of the time-varying covariance matrix in the CMSV model become more distinct, when

volatility is less common and exhibits pronounced idiosyncratic volatility patterns.

The second contribution of this paper is the introduction of the dynamic correlation

Cholesky multivariate stochastic volatility (DC-Cholesky MSV or DC-CMSV) model

in the spirit of Engle (2002) as an ordering robust alternative. The DC-CMSV model

specifies individual processes for volatilities and correlations to model the time-varying

covariance matrix. The correlation dynamics are modelled via a CMSV model on the

standardized data, which features a constant ratio of reduced-form volatilities. Simu-

lations and empirical evidence presented in this paper show that the lack of rotational

invariance becomes an empirically negligible property for the DC-CMSV model.

A notable feature of the DC-CMSV model is that the parameter of contempora-

neous relation is not restricted to evolving linearly but may capture relations between

variables that change nonlinearly over time. Moreover, the DC-CMSV approach can

be easily implemented into existing CMSV routines. Estimation of the model remains

simple, as traditional Kalman filter methods or fast band-precision matrix routines of

Chan and Jeliazkov (2009) can be used for inference purposes.

The third contribution of the paper is to demonstrate that restrictions imposed

by a particular variable ordering on the time-varying covariance matrix may be so

decisive that one may arrive at alternative conclusions. This property is illustrated for

Primiceri’s (2005) and Cogley, Primiceri, and Sargent’s (2010) application.

Regarding Primiceri’s (2005) application, alternative estimates on how U.S. mone-

tary policy evolved suggest that the interest rate response to inflation and unemploy-

ment was substantially more aggressive during the stagflation period. These estimates

are in stark contrast to those presented in the corrigendum of Del Negro and Primiceri

(2015), which indicate a largely muted response by the Fed. Apart from that, alterna-

tive estimates from a TVP-VAR with DC-CMSV are virtually indistinguishable under

all possible orderings. The results from this newly proposed model suggest that the

reaction of U.S. systematic monetary policy was modestly more aggressive during the

stagflation period, which is consistent with the findings of Sims and Zha (2006).

Estimates from Cogley, Primiceri, and Sargent’s (2010) model are very sensitive

to the ordering of variables, as the introduction of CMSV heteroskedasticity to the
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time-varying VAR parameters on top of the residuals introduces substantial parameter

uncertainty. Alternative estimates for inflation-gap persistence suggest that it gradu-

ally declined over the sample and did not significantly increase during the stagflation

period. Overall, estimates from different models considered in this paper suggest that

the majority of empirical evidence provided by Cogley, Primiceri, and Sargent (2010)

can be qualitatively confirmed but that there may be a broad range of possible values.

The findings of this paper relate to several strands in the literature. First, the paper

formalizes when and why the ordering of variables may matter for a data set at hand.

The paper advances the argument of Asai, McAleer, and Yu (2006) and the suggestion

made by Christopher Sims to Cogley and Sargent (2005) on p. 11 by the fact that the

dependence between volatilities and correlations particularly matters when the ratio of

volatilities varies over time. Moreover, evidence provided in this paper suggests that

differences in prior distributions play a subordinate role in explaining the sensitivity of

the estimates. This possibility was discussed by Primiceri (2005) and Bognanni (2018).

Second, this paper is not the first to demonstrate that variable ordering may play

a role in inference. Bognanni (2018) shows for Baumeister and Peersman’s (2013b)

application that the estimated effects of an oil supply shock on U.S. real activity are

sensitive to the chosen ordering as well. Bognanni’s (2018) argues that the selection of a

variable ordering is an arbitrary choice and should be considered as an additional source

of model and parameter uncertainty. What the findings of this paper add is that the

CMSV model generally imposes alternative dynamic restrictions on the time-varying

covariance matrix. Thus, estimates from this model should not be used as an input for

two-step identified time-varying structural VARs, as detailed in Primiceri (2005).

Third, estimates of the time-varying covariance matrix from the DC-CMSV model

can be considered as an effective model average over all alternative estimates of the

CMSV model. This is an attractive feature, as approaches proposed by Primiceri (2005)

or Nakajima and Watanabe (2011) suffer from immense or even intractable computa-

tional burdens. These methods need to explore all n! (n factorial) possible models.

Fourth, the DC-CMSV model is an attractive alternative to (inverted) Wishart

stochastic volatility models, which are insensitive to the ordering of variables.5 The

caveat of this model class is however that they allow for less flexible covariance ma-

trix dynamics. Particularly, they allow for either integrated or simple autoregressive

dynamics, but not for a combination of it or more general processes, see Primiceri

5For instance, see Uhlig (1997), Bognanni (2018), and Chan, Doucet, León-González, and Strachan

(2018) in the context of (TVP)-VARs with MSV or Philipov and Glickman (2006) and Asai and

McAleer (2009) in the context of MSV models.
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(2005).

The rest of this paper proceeds as follows. Section 2 derives some properties of

the CMSV model under alternative orderings and under an alternative data generating

process. Section 3 introduces the DC-CMSV model as a robust alternative. Section 4

conducts a Monte Carlo study to assess properties of the CMSV and DC-CMSV model.

Section 5 reconsiders Primiceri’s (2005) and Cogley, Primiceri, and Sargent’s (2010)

application in more detail. Section 6 concludes the paper.

2 On Cholesky Multivariate Stochastic Volatility

This section investigates how the ordering of variables affects properties of the

time-varying covariance matrix, Σt, in the Cholesky multivariate stochastic volatility

(CMSV) model. The name of the model is derived from the fact that it specifies the

dynamics of the parameters from the triangular factorization of Σt rather than speci-

fying the dynamics of Σt directly. Moreover, this section compares the data generating

process (DGP) of key state parameters of the CMSV model with the dynamic correla-

tion multivariate stochastic volatility (DC-MSV) model of Yu and Meyer (2006). This

alternative MSV model specifies individual volatility and correlation dynamics to span

the evolution of Σt, which is denoted as the volatility-correlation factorization of Σt.

The DC-MSV model is chosen as an alternative data generating process because the

time-varying covariance matrix is invariant to the ordering of variables6 and laws of

motion for state parameters are comparable across both models.

The following analysis is restricted to the bivariate case for tractability reasons.

Nevertheless, the properties discussed below are considered to be representative for the

n-dimensional case. This is specifically because the relationship between individual

parameters of Σt and the parameters under these alternative factorizations of Σt does

not fundamentally change in higher dimensions.

2.1 Some properties of the Cholesky MSV model

Now, the CMSV model is presented, which builds upon Primiceri’s (2005) model.7

Let yt be a vector process of dimension 2 × 1 that is mean zero and has time-varying

covariance matrix Σt of dimension 2× 2.

yt ∼ N(0,Σt) (1)

6For proof, see Appendix A.2

7Around the same time, Tsay (2005) independently introduced the CMSV approach in the financial

econometrics literature, see the survey of Asai, McAleer, and Yu (2006).
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Then, without loss of generality, the triangular factorization of Σt is given by

Σt = A−1
t DtD

′
tA
′−1
t (2)

where At is a lower triangular matrix and Dt is a diagonal matrix

At =

[
1 0

at 1

]
, Dt =

[
exp (g1,t) 0

0 exp (g2,t)

]
.

It follows that the vector of observables can be rewritten as

yt = A−1
t Dtu

C
t , uCt ∼ N(0, I2) (3)

A decomposition of the covariance matrix resulting in (3) is convenient because

it allows for efficient estimation of covariance matrices, see e.g., Pourahmadi (1999).

Primiceri (2005) exploits this fact and proposes modelling the coefficients in (3) rather

than of (1). This is a valid strategy because there is a one-to-one mapping between

Σt and its triangular factorization given by At and Dt. Notice that the ordering of

variables in yt, which determines the structure of At and Dt, is not necessarily related to

an identification scheme but is simply a convenient way to decompose Σt for estimation.

The model’s state parameters are assumed to be Gaussian random walks

gt = gt−1 + εgt , εgt ∼ N(0, G)

at = at−1 + εat , εat ∼ N(0, σ2
a)

where G is a diagonal covariance matrix as proposed by Koop, León-González, and

Strachan (2009). This assumption is commonly used in the applied literature and it is

made here to enhance tractability. All innovations are assumed to be jointly normally

distributed with the following variance covariance matrix

V ar


uCtεat
εgt


 =

I2 0 0

0 σ2
a 0

0 0 G

 .
To complete the specification of the model, common prior distributions are assumed

for the initial state parameters and variances

a0 ∼ N(µa, Va), σ2
a ∼ IG(νS, k

2
S),

g0 ∼ N(µg, Vg), σ2
g,i ∼ IG(νg, k

2
G), ∀i = 1, 2

6



Let yt be generated by the CMSV model with Σt. From the triangular fac-

torisation of Σt, it follows that the mapping from model parameters {g1,t, g2,t, at} to

{σ2
11,t, σ

2
22,t, σ12,t, ρt} the elements and functions of Σt is given by

σ2
11,t = exp (2g1,t), σ2

22,t = exp (2g2,t) + a2
t exp (2g1,t),

σ12,t = at exp (2g1,t) ρt = at
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance, ρt

is the correlation and at is the contemporaneous relation.

Then, the model implied state equation for the correlation process, ρt, is given by

ρt = ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property 1 (Σt under CMSV model). Let yt be generated by the CMSV model with

Σt, then

1. the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying,

2. the correlation ρt evolves nonlinearly,

3. the contemporaneous relation at evolves linearly.

For proof, see Appendix A.1.

These properties give rise to two important considerations when using the CMSV

model as a data generating process. First, the model rules out common reduced-form

volatility dynamics. Second, the assumption of a smoothly evolving contemporaneous

relation implies that correlation patterns may rapidly change when volatility clusters

idiosyncratically. Stated differently, the model interprets abrupt changes in relative

volatilities as the dominant driver of changing correlation.

Let ỹt = Pyt be the vector of variables with exchanged rows where P is a per-

mutation matrix satisfying P 6= I2 and I2 = P ′P . I2 is the identity matrix. Let

Σ̃t = PΣtP
′ be the covariance matrix with permuted elements. Analogously, the trian-

gular factorsation of Σ̃t = Ã−1
t D̃tD̃tÃ

′−1
t implies that the mapping from model param-

eters {g1,t, g2,t, at} to {g̃1,t, g̃2,t, ãt}, the transformed model parameters for ỹt, is given

by

exp(2g̃1,t) = σ2
22,t, exp(2g̃2,t) = σ2

11,t − ã2
tσ

2
22,t, ãt = at

σ2
11,t

σ2
22,t

.
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Then, the model-implied state equation for the analogously defined parameter of

contemporaneous relation, ãt, is given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property 2 (Reordering in CMSV model). Let Σ∗t be the time-varying covariance ma-

trix of an analogously set-up CMSV model on ỹt with model parameters {g∗1,t, g∗2,t, a∗t},
then

• Σ∗t and Σ̃t cannot have the same dynamic structure, and

• the average distance between transformed implied parameters {g̃1,t, g̃2,t, ãt} and

analogously constructed parameters {g∗1,t, g∗2,t, a∗t} increases with the variability of

the ratio of reduced-form variances
σ2
11,t

σ2
22,t

.

For proof, see Appendix A.1.

To put it differently, the ordering of variables induces a dynamic structure in Σt

that cannot be replicated by an analogously set-up CMSV model for any alternative

ordering of variables. The CMSV model therefore imposes different dynamic restrictions

on the time-varying covariance matrix under alternative orderings. As a consequence,

the ordering of variables is a nontrivial choice in the CMSV model.

While Σ∗t and Σ̃t cannot have the same dynamic structure, the dynamics may be

similar or may diverge substantially. This distance depends on the volatility pattern

of the data. Specifically, the distance is smaller when the volatility pattern of the

individual series exhibits strong commonalities. In this incidence, the ratio of reduced-

form variances becomes closer to being roughly constant. However, when there are

idiosyncratic volatility patterns, then this distance grows larger. Notice, an analyt-

ical quantification of this distance is not readily available. Section 4 provides some

quantification of this distance by means of a Monte Carlo simulation with a variety of

alternative data generating processes.

Above statements allow for some clarification on remarks that appear in the lit-

erature about properties of the time-varying covariance matrix in the CMSV model.

Primiceri (2005) points out that the ordering of variables matters for Σt because the

prior distribution of Σt is not rotationally invariant. Particularly, he shows that the

individual elements of the covariance matrix have alternative distributions under differ-

ent orderings of the variables (see footnote 5). Nevertheless, he suggests that it is not

8



a priori clear how inference is affected and that the effect might vary from case to case.

Relatedly, Bognanni (2018) argues that the introduction of the dynamic dependence of

model parameters in conjunction with the factorization of the covariance matrix leads

to a non-observational equivalent prior density for Σt.
8 The discussion above clarifies

when the ordering of variables is important for inference. Specifically, it matters when

there are idiosyncratic volatility patterns.

These results also shed light on the discussion of Asai, McAleer, and Yu (2006) and

a suggestion made by Christopher Sims to Cogley and Sargent (2005) on p. 11. They

conjecture that not separating volatility and correlation dynamics may impose some

dynamic restrictions on the time-varying covariance matrix. Particularly, the CMSV

model rules out common volatility patterns, which induce some nonlinear correlation

dynamics. Also, because volatility patterns are not common, alternative orderings

impose different dynamic restrictions on the time-varying covariance matrix.

2.2 The Cholesky MSV model and the DC-MSV model

Alternatively, the dynamics of Σt in (1) may be modelled by a DC-MSV model

in the spirit of Yu and Meyer (2006). Particularly, this model differs from the CMSV

model by the choice of the factorization for Σt. In particular, it models the dynamics

of the covariance matrix by decomposing Σt into individual processes for volatility and

correlation, which is given by

Σt = DtRtDt (4)

where Rt is a correlation matrix and Dt is a diagonal matrix

Rt =

[
1 ρt

ρt 1

]
, Dt =

[
exp (h1,t) 0

0 exp (h2,t)

]
.

It follows that the vector of observables can be written as

yt = Dtu
DC
t , uDCt ∼ N(0, Rt). (5)

A decomposition of the covariance matrix resulting in (5) has been introduced by

Bollerslev (1990) and Engle (2002) as a parsimonious modelling alternative to fully

parameterized multivariate GARCH models for estimating large dynamic covariance

matrices. One main distinguishing characteristic between these factorisations is that in

(4) volatilities and correlations are modelled as independent processes, whereas in (2)

they are modelled jointly.

8Primiceri (2005) elaborates on the triangular factorization in the contemporaneous case.
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The model’s state parameters are assumed to evolve as Gaussian random walks

ht = ht−1 + ηht , ηht ∼ N(0,W )

mt = mt−1 + ηmt , ηmt ∼ N(0, σ2
m)

ρt =
exp (mt)− 1

exp (mt) + 1
, ηρt ≡ ρt − ρt−1

where W is a diagonal covariance matrix and mt is an auxiliary process that is mapped

into a correlation process using the Fisher transformation. All innovations are assumed

to be jointly normally distributed with the following variance covariance matrix.

V ar


uDCtηmt
ηht


 =

Rt 0 0

0 σ2
m 0

0 0 W

 .
To complete model specification, common prior distributions are assumed.

m0 ∼ N(µm, Vm), σ2
m ∼ IG(νm, k

2
m),

h0 ∼ N(µh, Vh), σ2
h,i ∼ IG(νh, k

2
W ),∀i = 1, 2.

Let yt be generated by the DC-MSV model with Σt. From the volatility-correlation

decomposition of Σt, it follows that the mapping from model parameters {h1,t, h2,t,mt}
to {σ2

11,t, σ
2
22,t, σ12,t, ρt, at, ãt}, the elements and functions of Σt, is given by

σ2
11,t = exp (2h1,t), σ2

22,t = exp (2h2,t)

σ12,t = ρt exp (h1,t) exp (h2,t), ρt =
exp (mt)− 1

exp (mt) + 1
,

at = ρt
σ22,t

σ11,t

, ãt = ρt
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance, ρt

is the correlation, at and ãt are the respective parameters of contemporaneous relation

implied under Σt and Σ̃t = PΣtP
′, respectively.

Then, model-implied state equations for at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t

where ηρt ≡ ρt − ρt−1.

Under the DC-MSV model, the parameters of contemporaneous relations at and ãt

are driven by the correlation as well as the respective ratio of volatilities σ22,t
σ11,t

and σ11,t
σ22,t

.
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These ratios are determined by the ordering of the variables in yt and ỹt. Specifically,

they are defined by the volatility of the variable ordered in the second position in the

vector of variables divided by the one ordered in the first position. Thus, variable

orderings play a particular role for the implied evolution of at and ãt.

Notice, the volatility-correlation decomposition of Σt allows for specifying very gen-

eral volatility dynamics. For instance, the DC-MSV model may be set up to feature a

purely idiosyncratic volatility pattern (as specified above) or to exhibit some common-

alities or a completely common volatility pattern.

Property 3 (Σt under DC-MSV model). Let yt be generated by the DC-MSV model

with Σt, then

1. the correlation ρt evolves approximately linearly Gaussian for ρt ∈ (−0.5, 0.5),

2. when the ratio of reduced-form volatilities σ22,t
σ11,t

is constant, then at and ãt are

solely driven by ρt and have the same dynamics up to a scalar,

3. when the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying, then at and ãt

evolve nonlinearly and have different dynamic properties.

For proof, see Appendix A.2.

Comparing the properties of Σt implied by both models, the CMSV model assumes

a linear Gaussian process for the parameter of contemporaneous relation but implies

a nonlinearly evolving correlation process. The DC-MSV model, in contrast, implies

nonlinear dynamics for the parameter of contemporaneous relation and approximately

linear Gaussian dynamics for the correlation in some specified range. In other words,

the correlation process acts somewhat as a degree of freedom in the CMSV model, while

the parameter of contemporaneous relation acquires this role in the DC-MSV model.

Property 4 (DC-MSV, CMSV and implied covariances). Let Σt be generated by the

DC-MSV model. Then, the implied dynamics of the covariance σ12,t, approximated by

the state equations of the CMSV model for yt, is underestimated when the ratio of

volatilities increases; while it is mechanically overestimated, when it is approximated

by the state equations of the CMSV model for ỹt, as the ratio of volatilities is inverted.

For proof, see Appendix A.2.

Therefore, when yt is generated by the DC-MSV model, the covariances implied by

a CMSV model are systematically different across alternative orderings. In particular,

estimates of the CMSV model represent an upper and lower bound of the true covariance

parameter under the DC-MSV model.
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Property 5 (Posterior distribution of at and ãt under homoskedasticity). Let yt be

generated by a bivariate dynamic correlation model with constant unitary variances on

the main diagonal. Then, the difference of posterior mean and variance of at and ãt

implied under a respective CMSV model is induced by the likelihood and not the prior.

The difference between the posterior mean and variance of at and ãt depends on the

distance between the sequence of y2
1,t and y2

2,t.

For proof, see Appendix A.2.

Under this alternative data generating process, the implied posterior distribution

of at and ãt is not the same as the data is interpreted differently across alternative

orderings in the CMSV model. For this reason, the model produces different estimates

of the time-varying covariance matrix under alternative orderings. However, the prior

distribution of at and ãt is the same across alternative orderings. This suggests that the

posterior distribution of the time-varying covariance matrix should be largely insensitive

to the ordering of variables. Section 4 provides evidence that differences across posterior

estimates are visually negligible.

The property of the CMSV model that prior and posterior distribution of the time-

varying covariance matrix are largely insensitive to the ordering of variables when data

is homoskedastic suggests that one may use the CMSV approach as an ordering robust

data generating process for the correlation process. To construct a fully specified time-

varying covariance matrix, this process for the correlation can be combined with a

separate volatility model in the spirit of Engle (2002). This idea is exploited in the

next section to construct a new multivariate stochastic volatility model that is largely

insensitive to the ordering of variables and may be used for higher dimensional systems

of variables.9

3 The DC-Cholesky MSV Model

This section presents the details of the dynamic correlation Cholesky multivariate

stochastic volatility (DC-Cholesky MSV or DC-CMSV) model. The DC-CMSV model

uses a separate volatility model for the data and models the correlation dynamics of

the standardized data with the CMSV approach.

Let yt be a n×1 dimensional vector process that is mean zero and has a time-varying

9 The DC-MSV model of Yu and Meyer (2006) cannot be easily generalized to higher dimensions

for n ≥ 3. Asai and McAleer (2009) present an alternative DC-MSV model that is applicable to higher

dimensions but uses an inverted Wishart process to model correlation dynamics.
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covariance matrix Σt of dimension n× n

yt ∼ N(0,Σt). (6)

Then, Σt may be decomposed into marginal volatilities and correlations by

Σt = DtRtDt

where Dt is a diagonal matrix with volatilities and Rt is a correlation matrix

Dt =


exp (h1,t) 0 . . . 0

0 exp (h2,t)
. . .

...
...

. . . . . . 0

0 . . . 0 exp (hn,t)

 , Rt =


1 ρ2,1,t . . . ρn,1,t

ρ2,1,t 1
. . .

...
...

. . . . . . ρn,n−1,t

ρn,1,t . . . ρn,n−1,t 1

 .

It follows that the vector observables can be rewritten as

yt = Dtεt, εt ∼ N(0, Rt). (7)

Then, an auxiliary positive definite matrix is estimated on the standardized data

εt = A∗−1
t D∗t et, et ∼ N(0, In)

where

A∗t =


1 0 . . . 0

a∗2,1,t 1 . . .
...

...
. . . . . .

...

a∗n,1,t . . . a∗n,n−1,t 1

 , D∗t =


exp (h∗1,t) 0 . . . 0

0 exp (h∗2,t)
. . .

...
...

. . . . . . 0

0 . . . 0 exp (h∗n,t)


which is transformed to a correlation matrix using the formulas of Engle (2002)

Rt = Q
∗− 1

2
t QtQ

∗− 1
2

t (8)

Qt = A∗−1
t D∗tD

∗′
t At

∗′−1 (9)

Q∗t = diag[vecd(Qt)] (10)

where vecd(Qt) selects the diagonal of Qt.

Let a∗t be the lower off-diagonal elements of A∗t (stacked by rows) and ht and h∗t
be the vector of log volatilities on the diagonal of the matrix Dt and D∗t , respectively.
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Assume that the state dynamics evolve as a random walk

ht = ht−1 + εht , (11)

a∗t = a∗t−1 + εa
∗

t , (12)

h∗t = h∗t−1 + εh
∗

t . (13)

All innovations of the model are assumed to be joint normal.

V = V ar



et

εht
εa
∗
t

εh
∗
t


 =


In 0 0 0

0 W 0 0

0 0 S∗ 0

0 0 0 W ∗


where In is an identity matrix, S∗ is a block diagonal matrix, W = diag([σ2

h,1, ..., σ
2
h,n])

and W ∗ = diag([σ∗2h,1, ..., σ
∗2
h,n]) are positive definite matrices.

Assume independent prior distribution for h0, a∗0, h∗0, W , S∗i , W
∗.

h0 ∼ N(µh, Vh), σ2
h,i ∼ IG(νh, k

2
W ),∀i = 1, ..., n,

a∗0 ∼ N(µ∗a, V
∗
a ), Si ∼ IW (ν∗S,i, k

∗2
S · Ii), ∀i = 1, ..., n− 1,

h∗0 ∼ N(µ∗h, V
∗
h ), σ∗2h,i ∼ IG(ν∗h, k

∗2
W ), ∀i = 1, ..., n.

Next, the Gibbs sampling algorithm for the DC-CMSV model is presented, which

builds on the notation and results from Chan (2017). Stochastic volatility is sampled

using the auxiliary mixture sampler of Kim, Shephard, and Chib (1998).

Algorithm: Gibbs sampling algorithm for the DC-CMSV model

Pick some initial values for h(0), W (0), h
(0)
0 , ε∗(0), a(0), S(0), a

(0)
0 , h(0), W (0) and h

(0)
0 .

Then, repeat the steps from r = 1 to R:

1. Posterior draws from p(s, h,W, h0, ε|y)

• Draw s(r) ∼ (s|y, h(r−1)) (seven point distribution)

• Draw h(r) ∼ (h|y, s(r),W (r−1), h
(r−1)
0 ) (multivariate normal)

• Draw W (r) ∼ (W |h(r), h
(r−1)
0 ) (independent inverse Gamma)

• Draw h
(r)
0 ∼ (h0|y, h(r),W (r)) (independent normal)

• Draw ε(r) ∼ (ε|y, h(r)) (transform data to standardized normal)

2. Posterior draws from p(a∗, a∗0, S
∗|ε(r), h∗(r−1))
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• Draw a∗(r) ∼ (a∗|ε(r), a∗(r−1)
0 , S∗(r−1), h∗(r−1)) (multivariate normal)

• Draw S∗(r) ∼ (S∗|ε(r), a∗(r), a∗(r−1)
0 ) (inverse Wishart)

• Draw a
∗(r)
0 ∼ (a∗0|ε(r), a∗(r), S∗(r)) (multivariate normal)

3. Posterior draws from p(s∗, h∗,W ∗, h∗0|ε(r), a∗(r))

• Draw s∗(r) ∼ (s∗|ε(r), h∗(r−1)) (seven point distribution)

• Draw h∗(r) ∼ (h∗|ε(r), s∗(r),W ∗(r−1), h
∗(r−1)
0 ) (multivariate normal)

• Draw W ∗(r) ∼ (W ∗|h∗(r), h∗(r−1)
0 ) (independent inverse Gamma)

• Draw h
∗(r)
0 ∼ (h∗0|ε∗, h∗(r),W ∗(r)) (independent normal)

In contrast to the traditional Gibbs sampler of the CMSV model, the DC-CMSV

sampler first estimates the marginal volatility components of Dt and standardizes the

observed data. Then, a pseudo time-varying covariance matrix is estimated on the stan-

dardized data with the CMSV model. The parameters A∗t and D∗t are then transformed

into an estimate of the time-varying correlation matrix Rt by equations (8)–(10). The

draw of Rt in conjunction with Dt is used to span the evolution of the time-varying

covariance matrix Σt.

Next, some of the merits and drawbacks of the DC-CMSV model are discussed.

First, the posterior distributions of the marginal volatilities are independent of the

ordering of variables. Second, when the process for marginal volatilities is correctly

specified, the posterior distribution of the time-varying correlation matrix is largely

insensitive to the ordering of variables. Consequently, posterior estimates of the time-

varying covariance matrix of the DC-CMSV model are almost insensitive to the ordering

of variables. Third and in contrast to the CMSV model, DC-CMSV model implied pa-

rameters of contemporaneous relations may capture nonlinear instead of linear dynamics

between variables.

Nevertheless, these appealing properties come at the cost of increased computa-

tional complexity. In particular, the computational costs increase on account of the

need for the volatility series to be sampled twice instead of once, i.e. the independent

volatilities and the auxiliary volatilities for the estimation of the correlation matrix.

However, the increased computational complexity of the model remains manageable

on modern multi-core computers as volatility sampling can be parallelized, see Lopes,

McCulloch, and Tsay (2012).
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4 Monte Carlo Study

This section conducts a Monte Carlo study to quantify how the ordering of variables

affects the posterior estimates of the time-varying covariance matrix in the CMSV model

and DC-CMSV model when data is homoskedastic and heteroskedastic. Properties of

posterior estimates are characterized by in-sample fit, distance and similarity metrics.

4.1 Properties of Σt under homoskedasticity

According to Property 5, the posterior mean and variance of at and ãt are driven

apart by the influence of the likelihood and not the prior. To study the importance of

this property, a bivariate dynamic correlation model with a known correlation structure

and unitary variances is assumed as the data generating process to simulate 250 samples

of 1,000 observations each.10 This data generating process has been chosen as it implies

that the prior distribution of at and ãt, as defined in Section 2.2, are the same and that

the evolution of these parameters is solely driven by the evolution of the correlation ρt,

see Property 3.2.

The data generating process is given by

r1,t = ν1,t

r2,t = ν2,t

,

(
ν1,t

ν2,t

)
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])

where the process of conditional correlation uses the specification of Engle (2002)

1. Constant: ρt = 0.9,

2. Sine: ρt = 0.5 + 0.4 cos(2πt/200),

3. Fast Sine: ρt = 0.5 + 0.4 cos(2πt/20),

4. Step: ρt = 0.9− 0.5I(t > 500),

5. Ramp: ρt = mod (t/200).

These processes for the conditional correlation were chosen by Engle (2002) as they

exhibit various types of rapid changes, gradual changes, and periods of constancy. Some

of the processes appear to be mean reverting, while others have abrupt changes.

10A sample size of 1,000 is not yet realistic for macro application, however, it is chosen to mitigate

the effect of a small sample on the estimates.
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The CMSV model is estimated with fixed hyperparameters (kS, kW ), which are set

to 0.1 and common prior distribution. The MCMC estimation produces 35,000 samples

of which 15,000 are reserved for the burn-in period.

The in-sample fit for parameters of interest estimated under different orderings is

measured by the average mean absolute error (MAE). MAE statistics are computed for

the implied correlation ρt from estimates of Σt and for the parameter of contempora-

neous relation at and ãt across alternative orderings. The MAE is defined as

MAE(X
¯ORD, X0) =

1

M

M∑
i

(
1

T

T∑
t

|XORD(i)
t −X0

t |

)
(14)

where XORD(i) denotes the parameter estimate of the model with variable ordering

i = 1, 2 for M = 2. ORD(1) and ORD(2) denote the ordering yt = (y1,t, y2,t)
′ and

ỹt = (y2,t, y1,t)
′, respectively. X0 denotes the true value of the parameter.

The distance between alternative estimates is measured by the mean absolute dif-

ference (MAD) of the parameter of interest. MAD statistics are computed for ρt, at, ãt

and at− ãt. The latter denotes the difference between posterior median estimates of at

and ãt. The MAD is defined as

MAD(XORD(1), XORD(2)) =
1

T

T∑
t

|XORD(1)
t −XORD(2)

t | (15)

Table 1 presents the results from this Monte Carlo simulation. Turning to the in-

sample fit for the estimated parameters, MAE statistics indicate that posterior median

estimates of at and ãt fit the true correlation equally well. Estimates of the implied

correlation ρt, however, are always more precise than estimates for the parameters of

contemporaneous relation. This is not surprising as the CMSV model is designed to

produce valid draws of a covariance matrix and not of a correlation matrix.

MAD statistics indicate that the distance between alternative estimates of at and

ãt obtained under different orderings are of the same magnitude. The average distance

among all simulated processes is 0.026, which is rather small. However, the distance

between the difference of estimated posterior medians of at and ãt, at− ãt, is not small,

with an average of 0.08. Thus, estimates of at and ãt exhibit some alternative patterns.

Furthermore, the distance across implied correlation estimates ρt is the smallest among

all considered parameters, at 0.016. This indicates that even though the likelihood

drives pseudo estimates of correlation at and ãt apart, it does not, however, substantially

affect estimates of the implied correlation ρt.
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Table 1: Precision and discrepancy of posterior median estimates

MAE MAD

ρt at ãt ρt at − ãt at ãt

const 0.016 0.043 0.043 0.008 0.084 0.018 0.019

sine 0.080 0.092 0.091 0.022 0.086 0.035 0.034

fastsine 0.256 0.257 0.257 0.016 0.070 0.020 0.020

step 0.049 0.065 0.066 0.010 0.076 0.018 0.018

ramp 0.106 0.117 0.116 0.023 0.087 0.037 0.037

The table shows the forecast accuracy (MAE) and distance (MAD) for estimated cor-

relation ρt, the contemporaneous relation at and ãt across different orderings and the

difference between latter parameters at− ãt. A bold figure highlights the lowest statistics

for all parameters considered in each panel and for each DGP in each row.

Therefore, this Monte Carlo simulation provides evidence that the estimated cor-

relation of the CMSV model fits the data well and is almost insensitive to the ordering

of variables for homoskedastic data. Here, “almost” means that the distance between

alternative posterior median estimates is small, around or less than 0.025.11

4.2 Properties of Σt under heteroskedasticity

To investigates the sensitivity of the time-varying covariance matrix under het-

eroskedasticity, stochastic volatility is introduced to the dynamic correlation process.

According to Property 2, the more pronounced the movements in the ratio of reduced-

form volatilities of the data, the more significant dynamic restriction are imposed on

the time-varying covariance matrix in the CMSV model. By construction, the DC-

CMSV model integrates out stochastic volatility before estimating the correlation pro-

cess. Therefore, the structure of the model ensures that different degrees of idiosyncratic

volatility patterns do not drive estimates of the time-varying covariance matrix apart.

The process for stochastic volatility follows Asai and McAleer (2009), who assume

very persistent stochastic volatility dynamics for their dynamic correlation model, simi-

lar to the original GARCH specification in Engle (2002). In addition, a scale parameter

ci is introduced to simulate different degrees of idiosyncratic volatility patterns. Specif-

ically, three different scales are considered ci = {1, 2, 0.5} with i = {BM,H,L}, which

are denoted as benchmark, high volatility, low volatility DGP, respectively. By in-

11The chosen level for the threshold is arbitrary, however, an MAD of 0.025 indicates that differences

between correlation estimates are hardly visible on the possible range for ρt ∈ [−1, 1].
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creasing the scale of the innovations, the process of stochastic volatilities becomes more

nonlinear and, hence, the ratio of volatilities exhibits more time-variation.

The data generating process for stochastic volatility is defined as

h1,t+1 = 0.98h1,t + η1,t+1

h2,t+1 = 0.95h2,t + η2,t+1

,

(
η1,t

η2,t

)
∼ N

([
0

0

]
, ci

[
0.1662 0

0 0.262

])

then use them for each correlation process,

r1,t = ν1,t exp(0.5h1,t)

r2,t = ν2,t exp(0.5h2,t)
,

(
ν1,t

ν2,t

)
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])
which are the same as in Section 4.1.

The CMSV model and DC-CMSV model are estimated with fixed hyperparame-

ters (kS, kW ) and (kW , k
∗
S, k

∗
W ) that are all set to 0.1. The MCMC estimation produces

35,000 samples of which 15,000 are reserved for the burn-in period. Appendix B com-

plements the presented results with two robustness exercises.12

The in-sample fit of the estimated parameter is evaluated by the MAE. MAE statis-

tics are computed for estimated correlations and covariances. The sensitivity of esti-

mated parameters due to alternative orderings is assessed by distance and correlation

metrics. Reported as distance metrics are the MAD and the root mean square differ-

ence (RMSD), which is similarly defined as the MAD. When the RMSD statistic grows

substantially larger than the MAD statistic, then this indicates that there are periods

when the distance between estimated parameters is unusually large.

The similarity of estimated parameters is measured by the correlation of the first

difference of estimated parameters (FD). The first difference rather than the level of

the estimates is used because the latter induces spurious correlation due to common

trends in the level series.

The FD statistics is defined as

FD(XORD(1), XORD(2)) = corr
(

∆X
ORD(1)
t ,∆X

ORD(2)
t

)
where ∆ denotes the first difference operator.

12 In the first exercise, the hyperparameters (kS , kW ) and (kW , k∗S , k
∗
W ) are estimated with the recent

algorithm of Amir-Ahmadi, Matthes, and Wang (2018) to allow for a fair comparison across models and

orderings as well as to control for different degrees of time-variation associated with alternative DGPs.

The second exercise addresses the concern that the random walk transition equation is misspecified as

the true DGP assumes that volatilities and some correlation processes evolve stationary. To control

for this, the models are re-estimated assuming autoregressive laws of motion for volatilities and time-

varying parameters. Overall, the results presented are robust to these sensitivity checks.
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Figure 2: Time-varying covariance matrix (sine, benchmark DGP)
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The figure shows the posterior median of the ratio of volatilities and contemporaneous

relation for a selected ordering for both models in the upper panel. The lower panel

shows the correlation and the covariance for a selected model for both orderings.

To illustrate the sensitivity of Σt under both models, Figure 2 shows the posterior

median of the ratio of volatilities and parameter of contemporaneous relation for a

20



selected ordering of variables and both models in the upper panel, and the correlation

and the covariance for a selected model and both orderings in the lower panel for one

replication of the sine correlation process.

The upper panel of the figure shows that the ratio of volatilities is similar across

models and exhibits nonlinear patterns over time. For the parameter of contemporane-

ous relation, however, there are marked differences across models. Especially, estimates

of the DC-CMSV model exhibit nonlinear dynamics, which are linked to the move-

ment of the ratio of volatilities. Moving to the lower panel, estimated correlations and

covariances of the CMSV model exhibit systematic differences across alternative order-

ings. The estimates especially diverge when the ratio of volatilities suddenly moves

substantially. This happens as the CMSV model cannot properly capture the non-

linear dynamics of the parameter of contemporaneous relation. Moreover, estimated

correlations and covariances of the DC-CMSV model lie somewhere between alterna-

tive estimates of the CMSV model. According to Property 4, this is to be expected as

estimates of the CMSV model can be regarded as an upper and lower bound of the true

comovement parameters when data is generated from a dynamic correlation model.

Table 2 presents statistics for estimated correlations. The table shows that the DC-

CMSV model produces the most precise correlation estimates for all except the fastsine

correlation process. Here, estimates of the CMSV model are more precise. However, the

in-sample fit of the CMSV model deteriorates substantially for the high volatility DGP,

while the statistics of both models are similar for the low volatility DGP. Moreover, the

absolute value of the in-sample fit statistics for the DC-CMSV model remains similar

under different degrees of idiosyncratic volatility patterns.

Differences between MAD and RMSD statistics for the CMSV model indicate that

there may be periods when there is a considerable distance across alternative correlation

estimates. Particularly, RMSD statistics for the benchmark DGP show that a distance

of 0.04 to 0.11 for the estimated correlation path is not unusual. These statistics

substantially inflate and deflate for the high volatility DGP and the low volatility DGP,

respectively. In contrast, analogous statistics for the DC-CMSV model are hardly

affected by different scales of idiosyncratic volatility patterns in the simulated data.

FD statistics are fairly far below one for estimated correlations of the CMSV model.

This indicates that changes in estimated correlation paths feature some idiosyncratic

components. For the DC-CMSV model, FD statistics are substantially higher, but are

still not close to one. For the case of constant correlation, the metric is negative, which

suggests that estimated correlation paths move in opposite directions. However, FD

statistics should not be interpreted in isolation. In fact, the low level of MAD and
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RMSD statistics indicates that estimated correlations are indeed very similar for the

DC-CMSV model.

Table 2: Estimated correlation

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.040 0.030 0.031 0.025 0.041 0.031 0.307 -0.284

sine 0.096 0.086 0.063 0.018 0.088 0.023 0.559 0.943

fastsine 0.249 0.256 0.082 0.011 0.108 0.014 0.382 0.911

step 0.078 0.061 0.044 0.017 0.065 0.022 0.499 0.768

ramp 0.118 0.110 0.067 0.020 0.096 0.027 0.567 0.942

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.060 0.040 0.048 0.025 0.076 0.031 0.304 -0.269

sine 0.118 0.090 0.108 0.015 0.146 0.020 0.278 0.947

fastsine 0.248 0.256 0.144 0.008 0.185 0.011 0.127 0.924

step 0.103 0.067 0.080 0.014 0.120 0.018 0.291 0.788

ramp 0.138 0.114 0.112 0.017 0.154 0.022 0.297 0.945

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.029 0.023 0.037 0.029 0.139 -0.247

sine 0.086 0.083 0.043 0.021 0.060 0.027 0.772 0.942

fastsine 0.253 0.256 0.039 0.014 0.052 0.017 0.667 0.901

step 0.064 0.057 0.029 0.017 0.040 0.022 0.669 0.792

ramp 0.110 0.108 0.045 0.023 0.066 0.031 0.763 0.940

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic

volatility. A bold figure highlights the best model in each panel and row.

Turning to estimated covariances, Table 3 shows that the DC-CMSV model pro-

duces the most precise estimates for almost all considered correlation DGPs considered.

MAD and RMSD statistics indicate that the distance between estimated covariances is

small, while estimates from the CMSV model may exhibit substantial differences. Strik-
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ingly, FD statistics of the DC-CMSV model are very close to one across all different

correlation DGPs. Since the marginal volatilities in the DC-CMSV model are by con-

struction independent of the ordering, these statistics show that estimated covariances

are largely insensitive to the ordering of variables. Moreover, similarity and distance

statistics indicate that the estimated covariances of the CMSV model substantially

diverge as the idiosyncratic volatility patterns in the data grow stronger.

Table 3: Estimated covariance

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.313 0.285 0.169 0.031 0.240 0.044 0.378 0.970

sine 0.212 0.199 0.102 0.021 0.153 0.030 0.668 0.981

fastsine 0.331 0.331 0.106 0.013 0.159 0.018 0.622 0.990

step 0.248 0.224 0.109 0.021 0.167 0.030 0.566 0.981

ramp 0.232 0.221 0.104 0.024 0.158 0.034 0.642 0.978

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.436 0.389 0.207 0.037 0.349 0.057 0.469 0.988

sine 0.288 0.253 0.179 0.021 0.307 0.033 0.572 0.993

fastsine 0.403 0.396 0.210 0.012 0.351 0.019 0.467 0.997

step 0.348 0.301 0.169 0.021 0.299 0.033 0.562 0.994

ramp 0.312 0.281 0.183 0.023 0.313 0.037 0.553 0.992

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.217 0.153 0.026 0.201 0.034 0.192 0.931

sine 0.170 0.163 0.081 0.023 0.114 0.030 0.665 0.963

fastsine 0.296 0.296 0.049 0.015 0.068 0.020 0.768 0.969

step 0.190 0.177 0.089 0.019 0.130 0.026 0.473 0.955

ramp 0.190 0.185 0.085 0.025 0.121 0.034 0.637 0.957

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to of stochas-

tic volatility. A bold figure highlights the best model in each panel and row.
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Thus, this Monte Carlo simulation provides evidence that CMSV model produces

less precise and more divergent estimates of the time-varying covariance matrix as the

idiosyncratic volatility patterns in the data grow stronger. It also demonstrates for a

variety of data generating processes that estimates of the DC-CMSV model are almost

insensitive to alternative orderings of variables.

5 Empirical Application

This section reviews two empirical applications to illustrate how a particular or-

dering of variables may drive conclusions. The first study to be reviewed is on time

variation in U.S. monetary policy by Primiceri (2005) and the second is on inflation-

gap persistence in the U.S. by Cogley, Primiceri, and Sargent (2010). In these studies,

different versions of the CMSV model are used in conjunction with a time-varying pa-

rameter VAR model to study changes in the dynamic relationships between inflation,

the unemployment rate and the interest rate. Moreover, this section compares these

estimates to those coming from a DC-CMSV model developed in this paper.

5.1 Time variation in U.S. monetary policy

This section reviews the results for Primiceri’s (2005) application in the light of

alternative orderings. Figure 1 demonstrates that estimated covariances are sensitive to

alternative orderings and exhibit marked differences during the stagflation period. Since

estimated quantities in the structural analysis depend on the time-varying covariance

matrix, some results may change under alternative orderings.

Before investigating this issue, the estimation of reduced-form time-varying param-

eter VAR models and the identification of structural parameters are briefly discussed,

building upon the arguments in Primiceri (2005). Then, details for replicating the

structural analysis using estimated parameters from these alternative VARs are pro-

vided. Assuming that ordering of variables is negligible, note that estimates from these

alternative VARs should imply nearly the same reduced-form dynamics for the data

and, thus, give rise to the same conclusions. The presented procedure is tailored to

utilize the replication files of Del Negro and Primiceri (2015).

Estimation of reduced-form TVP-VAR: Let yt be the vector of endogenous vari-

ables of dimension n × 1 and let ỹt = Pyt be the vector of endogenous variables with

exchanged rows where P is a permutation matrix that satisfies P ′P = In. Assume that

ỹt evolves according to a time-varying parameter VAR model

ỹt = c̃t + B̃1,tỹt−1 + ...+ B̃k,tỹt−k + ũt, ũt ∼ N(0, Σ̃t) (16)
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where c̃t is of dimension n × 1, B̃i,t, i = 1, ..., k is of dimension n × n and ũt is of

dimension n× 1 or more compactly written in vectorized form

ỹt = X̃ ′tB̃t + ũt, ũt ∼ N(0, Σ̃t) (17)

where X̃ ′t = In ⊗ [1, ỹ′t−1, ..., ỹ
′
t−k] and B̃t = vec([c̃t, B̃1,t, ..., B̃k,t]

′).

To model the evolution of Σ̃t, the CMSV approach is used. Specifically, Σ̃t is

decomposed by a triangular factorization, which is defined as

Σ̃t = Ã−1
t D̃tD̃

′
tÃ
−1′

t . (18)

It follows that (17) can be rewritten as

ỹt = X̃ ′tB̃t + Ã−1
t D̃tε̃t, ε̃t ∼ N(0, In). (19)

where state parameters and prior distributions are as in Primiceri (2005).

Identification: Next, consider the following structural VAR

ỹt = X̃ ′tB̃t + Ξ̃tε̃t, ε̃t ∼ N(0, In),

which may differ from (19) because Ξ̃t is not necessarily lower triangular. Assuming

that there are sufficient identification restrictions that meet some regularity conditions,

the parameters in Ξ̃t may be exactly, partially or set identified, see Rubio-Ramirez,

Waggoner, and Zha (2010) and Arias, Rubio-Ramı́rez, and Waggoner (2018).

The first step is to estimate (19) using the algorithms described in Del Negro and

Primiceri (2015), then obtain posterior draws of the reduced-form time-varying VAR

coefficients B̃t’s and time-varying covariance matrices Σ̃t’s in (17). The second step is

to estimate Ξ̃t that satisfies

Ξ̃tΞ̃
′
t = Σ̃t

for each draw of Σ̃t.
13

Replication of structural analysis: Primiceri (2005) identifies a monetary policy

shock by imposing zero restriction on the contemporaneous reaction of inflation and the

unemployment rate. This is a triangular identification scheme for the variable ordering

yt = [πt, ut, it]
′, which he also uses to estimate the parameters in (19) and hence,

Ξ̃t = Ã−1
t D̃t for P = In. Therefore (19) is the structural VAR of interest. However,

13 Ξ̃t may be estimated by using the algorithms of Arias, Rubio-Ramı́rez, and Waggoner (2018).
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alternative estimates of Ξ̃t may be obtained by estimating reduced-form parameters

first and then estimating the structural parameters in Ξ̃t, which is not lower triangular

for any other admissible permutation matrix except the identity matrix.

To replicate the structural analysis for alternative variable orderings, first B̃t’s and

Σ̃t’s in (17) are estimated by making use of (18) and (19). Then, it is useful to reorder

all parameters of the VAR model for ỹt in (17) such that they satisfy the variable

ordering of yt. The reordered reduced-form time-varying parameter VAR model can be

obtained by pre-multiplying (16) by P ′

P ′ỹt = P ′c̃t + P ′B̃1,tPP
′ỹt−1 + ...+ P ′B̃k,tPP

′ỹt−k + P ′ũt, P ′ũt ∼ N(0, P ′Σ̃tP )

which can be rewritten in compact vectorized form as

P ′ỹt = P̄ ′X̃ ′tP̄
′P̄ B̃t + P ′ũt, P ′ũt ∼ N(0, P ′Σ̃tP )

where P̄ = P ⊗ P̂ and P̂ =

[
1 01×(n·k)

0(n·k)×1 [Ik ⊗ P ]

]
. Then, the time-varying parameter

VAR with original coefficient ordering is given by

yt = X ′tBt + ut, ut ∼ N(0,Σt)

where Xt = P̄ ′X̃ ′tP̄
′, Bt = P̄ B̃t, Σt = P ′Σ̃tP and ut = P ′ũt. Then, Ξt is estimated using

a Cholesky decomposition of Σt. A
−1
t and Dt are obtained by solving Ξt = A−1

t Dt.
14

The time-varying parameter VAR model with CMSV (denoted as CMSV-TVP-

VAR) is estimated using Algorithm 2 of Del Negro and Primiceri (2015), which is

the approximate mixture sampler for stochastic volatility. In addition, a DC-CMSV

version of the model is estimated for comparison (denoted as DC-CMSV-TVP-VAR).

The Monte Carlo estimation produces 70,000 draws from the Gibbs sampler, while the

first 20,000 are discarded in the burn-in period.

Estimated reduced-form TVP-VAR models: Before turning to the results of

the structural analysis, it is instructive to assess the sensitivity of the B̃t’s and the

Σ̃t’s. Figures 8 and 9 in Appendix C depict the posterior median of the estimated

time-varying VAR parameters for each variable in the respective column. Alternative

estimates for the B̃t’s of the CMSV-TVP-VAR exhibit some minor differences across

alternative ordering but overall they are rather similar. The estimated VAR coefficients

of the DC-CMSV-TVP-VAR, however, are virtually indistinguishable.

14Note Dt = diag[vecd(Ξt)], hence, A−1
t = Ξtdiag[vecd(Ξt)]

−1.
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Next, Figures 10 and 11 in Appendix C show the posterior median of the estimated

correlation, covariance, and volatility of the reduced-form residuals. For the CMSV-

TVP-VAR model, the estimated correlation and covariance exhibit pronounced differ-

ences during the stagflation period. Differences across volatility estimates are, however,

rather small. In contrast, estimates of the DC-CMSV-TVP-VAR model are virtually

indistinguishable across alternative orderings. Moreover, estimates of the CMSV-TVP-

VAR model are systematically different across orderings in the sense that they are

below or above estimates of the DC-CMSV-TVP-VAR model, see Property 4. Taking

stock, these properties indicate that potential differences in estimated quantities of the

structural analysis are primarily driven by differences in estimated Σ̃t’s but not B̃t’s.

Revisiting the structural analysis: Having documented general differences across

reduced-form parameter estimates, consequences are analyzed in more detail for two

particular orderings. Specifically, estimates from the original variable ordering y123
t =

[πt, ut, it]
′ and the reverse variable ordering y321

t = [it, ut, πt]
′ are contrasted because

differences between estimated covariances are the most pronounced.

Figure 3: Long-run U.S. systematic interest rate response
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The figure depicts interest rate response to a 1% permanent increase in inflation at the left

panel (a) and the unemployment rate at the right panel (b) under alternative orderings.

Figure 3 shows the estimated long-run U.S. systematic interest rate response to

inflation and unemployment for both the CMSV-TVP-VAR model and the DC-CMSV-
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TVP-VAR model. In particular, the estimates of the former model provide evidence

for two equally plausible but mutually exclusive conclusions as to how U.S. systematic

monetary policy reacted during the stagflation period. Estimates obtained from the

original variable ordering, y123
t , provide evidence for a muted response, while those

obtained under the reverse ordering of variables, y321
t , point to a drastically changing

and aggressive response. Thus, the choice of variable ordering may have a substantial

effect on the estimates and may lead to alternative conclusions. This is clearly an

undesirable property as estimates are associated with substantial model uncertainty

that cannot be easily controlled for. Regarding the remaining structural analysis in

Primiceri (2005), there are no marked differences for the other exercises as these do not

strongly depend on the estimated covariances.15

Furthermore, estimates of the DC-CMSV-TVP-VAR model point to an unambigu-

ous conclusion under all possible orderings. The estimates suggest that the reaction

function was modestly more aggressive during the stagflation period. This evidence is

consistent with the finding in Sims and Zha (2006), who provide strong evidence for

regime switches in terms of how monetary policy was conducted during the period of

stagflation.

5.2 Inflation-gap persistence in the U.S.

Next, the sensitivity of Cogley, Primiceri, and Sargent’s (2010) empirical results

are investigated using the replication files in the AEJ: Macroeconomics. The focus of

this study differs from most applications of CMSV-TVP-VARs in that it uses this class

of models to summarize reduced-form dynamic properties of variables. Specifically, the

study is concerned with inflation-gap persistence but also report measures of trend-

inflation, volatility, the conditional expectation of inflation based on unemployment

news as well as Phillips correlations.

Cogley, Primiceri, and Sargent (2010) extend the TVP-VAR model of Cogley and

Sargent (2005) by introducing heteroskedasticity to the time-varying VAR parameters,

the B̃t’s. These models are denoted as the CPS-TVPSV-VAR and the CS-TVP-VAR,

respectively. Both models differ from the CMSV-TVP-VAR of Primiceri (2005) by the

fact that they assume a constant lower triangular matrix of contemporaneous relations

Ã−1 instead of time-varying Ã−1
t in (18).16 Note, the authors estimate their model with

15A comparison of all exercises is documented in Appendix C (Figures 12 – 19).

16By restricting the parameters of contemporaneous relations to being constant, the model-implied

process for the correlation is solely determined by the volatility pattern and the selected ordering of

variables. Recall that a reordering of variables leads to inversion for the ratio of volatilities.
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the variable ordering y123
t = [it, ũt, πt]

′, where ũt is the logit of the unemployment rate,

i.e. which is the reverse ordering as compared to Primiceri’s (2005) application.17

Figure 4: R2
j,t statistics

The figure depicts the posterior median for R2
j,t statistics based on the CPS-TVPSV-

VAR, with estimates for GDP inflation shown in the left panel and those for PCE inflation

shown in the right panel.

Figure 4 shows posterior median estimates of the R2
j,t statistics, which are used as

17 Cogley, Primiceri, and Sargent (2010) select this ordering as they follow Cogley and Sargent

(2005), who document that this ordering minimizes the drift in the B̃t’s.
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a measure of inflation-gap persistence, for GDP inflation and PCE inflation obtained

under all possible orderings of the variables. The graph shows that alternative esti-

mates may lead to a different conclusion as to how inflation-gap persistence in the U.S.

evolved during the stagflation period. Particularly, estimates from the alternative or-

dering y321
t = [πt, ũt, it] for GDP inflation suggest that persistence declined gradually

over time. This is in stark contrast to the estimates coming from y123
t which indicate

that persistence significantly surged during the Great Inflation period and declined after

1980. In addition to qualitative patterns differing, quantitative differences across esti-

mates are substantial. For instance, estimated persistence ranges from 0.6 up to around

one for the one-step ahead horizon of both GDP inflation and PCE inflation in the mid-

1970s. This marked difference in estimates arises due to estimates of trend-inflation and

volatility being substantially different, see Figures ?? and ?? in Appendix D.

Based on this evidence, the question of how much the introduction of CMSV het-

eroskedasticity induces sensitivity to the estimates arises. To answer this question,

estimates from three alternative models are considered. For the first two models,

heteroskedasticity for innovations of the B̃t’s is shut-off. The first model is the CS-

TVP-VAR of Cogley and Sargent (2005) and the second is a DC-CMSV version of the

CS-TVP-VAR, denoted as the DC-CMSV-TVP-VAR. The third model assumes inde-

pendent volatility dynamics for the innovations of the B̃t’s and assumes DC-CMSV for

the VAR residuals.18 This model is denoted as the DC-CMSV-TVPSV-VAR.

Figure 5 shows posterior medians of R2
j,t statistics for GDP inflation for the variable

ordering y123
t and y321

t , with homoskedastic and heteroskedastic innovations for B̃t’s in

the left panel (a) and the right panel (b), respectively. Estimates of R2
j,t statistics from

the CS-TVP-VAR and the DC-CMSV-TVP-VAR in panel (a) indicate that the ordering

of variables has a limited effect on the estimated path and magnitude of inflation-gap

persistence.19 Thus, shutting off CMSV heteroskedasticity for innovations of the B̃t’s

eliminates the bulk of model and parameter uncertainty for this quantity of interest.

Apart from that, estimates from both models suggest that inflation-gap persistence in

the U.S. surged during the stagflation period and dropped significantly after the 1980s,

confirming the result in Cogley, Primiceri, and Sargent (2010).

Next, estimates from the DC-CMSV-TVPSV-VAR in panel (b) show that estimated

inflation-gap persistence is substantially lower and exhibits a moderately different pat-

tern around the stagflation period. Particularly, it features less stickiness in terms

18Independent volatility processes instead of a full time-varying covariance matrix for the parameter

innovations are assumed to limit model and computational complexity.

19Estimates from alternative orderings are similar.
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Figure 5: R2
j,t statistics

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts posterior median of R2
j,t statistics for GDP inflation from TVP-VARs

with homoskedastic and heteroskedastic parameter innovations for B̃t’s at the left panel

(a) and the right panel (b), respectively.

of the level shifts depicted in panel (a). Also, notice that for the CPS-TVPSV-VAR

reduced-form estimates are affected not only by variable ordering but also by parame-

ter ordering. For instance, when innovations of the parameter of constants, c̃t’s, have

different volatility patterns, then exchanging the order of parameters affects estimates

as well. Therefore, this comparison illustrates that modelling heteroskedasticity via

the CMSV approach may lead to very different estimates of B̃t’s and Σ̃t’s, which may
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eventually alter inference on reduced-form properties for variables of interest.

Appendix D presents further sensitivity analysis across models for trend-inflation,

volatility, the adjustment of inflation expectation to unemployment news and Phillips

correlations. Overall, estimated quantities of the CPS-TVPSV-VAR model exhibit

sometimes subtle and sometimes substantial differences across alternative variable or-

derings. Comparing these results with those coming from the CS-TVP-VAR of Cogley

and Sargent (2005), most ambiguity between estimates vanishes. It only remains rele-

vant for quantities that involve estimates of the covariances such as conditional inflation

expectations and Phillips correlations. Furthermore, estimates from these alternative

models indicate that most of the empirical evidence provided by Cogley, Primiceri, and

Sargent (2010) can be qualitatively confirmed but that there may be a broad range of

possible values.

6 Conclusion

This paper studied the consequences of exchanging the order of variables on the

dynamic properties of the time-varying covariance matrix in the CMSV model. The

paper found that alternative dynamic restrictions are imposed on the time-varying co-

variance matrix when the ratio of reduced-form volatilities is time-varying. Simulations

demonstrated that the stronger the idiosyncratic volatility pattern in the data, the more

divergent the estimates of the time-varying covariance matrix. The DC-CMSV model

was proposed as a robust alternative, which produces almost rotationally invariant es-

timates of the time-varying covariance matrix. An important feature of the DC-CMSV

model is that the parameters of contemporaneous relation may evolve nonlinearly. For

the two empirical applications considered, it was illustrated that variable orderings may

substantially affect estimates and may give rise to alternative conclusions.

The results of this paper suggest that the ordering of variables is a nontrivial choice

when estimating a time-varying covariance matrix via the CMSV approach. Moreover,

the sensitivity of the estimates documented in this paper is likely to be present in other

empirical applications as well since it is not uncommon for financial and economic time

series to exhibit individual volatility dynamics. For this reason, estimates based on the

CMSV model should be interpreted with some caution and may not as robust as they

seem. In addition, the relatively small costs of computing a more robust estimate using

the DC-CMSV model seem worthwhile for the purposes of most empirical applications.

The finding that specific assumptions about the state dynamics coupled with the

chosen factorization of the time-varying covariance matrix may impose different re-

strictions across alternative variable orderings may not only be limited to this state
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space model. The linear dynamic factor model with time-varying factor loadings and

stochastic volatility may also suffer from similar restrictions. Future research should

investigate whether rotational non-invariance in this class of models may be also driven

by an overly restrictive evolution of the state or factor dynamics.
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A Proofs

A.1 Some properties of the Cholesky MSV model

Proof of Property “Σt under CMSV model” .

Subproof of Claim (1). Define bt =
σ2
11,t

σ2
22,t

. Then,

σ2
22,t = exp(2g2,t) + a2

t btσ
2
22,t

=
1

1 + bta2
t

exp(2g2,t)

=
1

1 + bt(at−1 + εat )
2

exp(2g2,t−1) exp(2εg2,t)

=
1 + bta

2
t−1

1 + bt(at−1 + εat )
2
σ2

22,t−1 exp(2εg2,t). (20)

Using σ2
11,t = btσ

2
22,t, it follows that

σ2
11,t =

1 + bta
2
t−1

1 + b(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t). (21)

However, the state equation for σ2
11,t is given by

σ2
11,t = σ2

11,t−1 exp(2εg1,t). (22)

Combining (21) with (22) gives

1 + bta
2
t−1

1 + bt(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t) = σ11,t−1 exp(2εg1,t)

1 + bta
2
t−1

1 + b(at−1 + εat )
2

exp(2εg2,t) = exp(2εg1,t). (23)

Since εat is independent of {εg1,t, ε
g
2,t}, bt must be time-varying to ensure that this equation

holds in every period. Thus, the ratio of volatilities is not constant. �

Subproof of Claim (2). The correlation ρt depends on reduced-form parameters by

ρt = at
σ11,t

σ22,t

= at−1
σ11,t−1

σ22,t−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

= ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

(24)
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where εg∗∗2,t ≡ log(σ22,t) − log(σ22,t−1). Then, because the ratio of volatilities is time-

varying and log-normally distributed, it follows from (24) that the correlation evolves

nonlinearly. �

Subproof of Claim (3). Follows directly from the definition. �

Proof of Property “Reordering in CMSV model”.

Under Σ̃t, the true parameter ãt is given by

ãt = at
σ2

11,t

σ2
22,t

.

Then, the transition equation for the implied contemporaneous relation parameter, ãt

is given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

The time-varying ratio of reduced-form variances implies that ãt evolves nonlinearly.

Specifically, the transition from ãt−1 to ãt is leveraged or dampened by the innovations

to stochastic volatility as well as the ratio of variances itself. In contrast, the state

equation of ã∗t is a Gaussian random walk. Consequently, the true dynamics of ãt

cannot be obtained by the state equation of ã∗t . Hence, the dynamic structures induced

into Σ∗t and Σ̃t are different.

The parameters under the CMSV model set up analogously for Σ̃∗t are given by

σ̃∗222,t = exp(2g̃∗2,t), σ̃∗211,t = exp(2g̃∗1,t) + (ã∗t )
2 exp(2g̃∗2,t)

σ̃∗12,t = ã∗t σ̃
∗2
22,t, ρ̃∗t =ã∗t

σ̃∗22,t

σ̃∗11,t

Since the ratio of variances cannot be constant for this DGP, the dynamic path of these

parameters departs from the dynamic path of the true parameters

σ̃12,t = ãtσ̃
2
11,t = σ12,t, ρ̃t = at

σ11,t

σ22,t

= ρt,

as the variability of the ratio of variances increases.
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A.2 The Cholesky MSV model and the DC-MSV model

Property 6 (Rotational invariance of Σt under DC-MSV model). Let yt be generated

by the DC-MSV model with covariance matrix Σt. Define the vector of variables with

exchanged rows ỹt and the permuted covariance matrix Σ̃t = PΣtP
′. Analogously,

define Σ̃∗t = D∗tR
∗
tD
∗
t , the covariance matrix of ỹt = Pyt where P is a permutation

matrix. Then, Σ̃t = Σ̃∗t , i.e. the reduced-form parameters of Σt are independent of the

ordering of the variables.

Proof. If Σ̃t = Σ̃∗t , then P ′Σ̃∗tP = P ′D∗tPP
′R∗tPP

′D∗tP since Dt = P ′D∗tP (D∗t is

diagonal) and Rt = P ′R∗tP = R∗t (R∗t is symmetric). It follows that Σt = P ′Σ̃∗tP .

Proof of Property “Σt under DC-MSV model”.

Subproof of Claim (1). For g : m → ρ and m ∈ [−1.1, 1.1] we have ρ = g(m) ∈
[−0.5, 0.5]. On this interval, the MSE of a linear regression of ρ on m is 5.5e-5. Figure 6

compares the linear prediction for ρ on the interval for m ∈ [−5, 5]. The figure indicates

that when |m| > 1.1, the approximation error increases substantially as the function g

becomes more nonlinear. Thus, for ρ ∈ (−0.5, 0.5), the mapping g(m) is approximately

linearly and the innovations are approximately Gaussian.

Figure 6: Fisher transformation: mapping between ρ and m
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Subproof of Claim (2). The transition equations for the implied contemporaneous rela-

tions under the two alternative orderings at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t
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where ηρt ≡ ρt−ρt−1. Then, when the ratio of reduced-form volatilities is constant, that

is, σ22,t
σ11,t

= c ∀t, c > 0, it follows that

at = at−1 + ηρt c, ãt = ãt−1 + ηρt
1

c
, (25)

Thus, the dynamic evolution of at and of ãt are driven by the correlation process. Since

ãt = at
1
c2

, the dynamic evolution of ãt and of at are the same up to a positive scalar. �

Subproof of Claim (3). When the ratio of reduced-form volatilities is time-varying, then

the transition from at−1 to at is nonlinear as it is scaled by the log-normally distributed

ratio of volatilities. Then, after a reordering of variables, the influence of the ratio of

volatilities on the contemporaenous relation is inverted. This means that the distance

from at−1 to at and from ãt−1 to ãt is not symmetric. Therefore, at and ãt obey different

nonlinear dynamics. �

Proof of Property “DC-MSV, CMSV and implied covariances”.

The true dynamic structure for the contemporaneous relation is given by

at = at−1

exp (ηh2,t)

exp (ηh1,t)
+ ηρt

exp (h2,t)

exp (h1,t)
. (26)

This equation substantially differs from the linear Gaussian process of a∗t . Specifically,

it features state dependent time-varying parameters, non-normal and heteroskedastic

innovations that may leverage or dampen the transition from at−1 to at.

To quantify the impact of these nonlinearities, the equation is linearized using a

first order Taylor series expansion with information up to t− 1, i.e. a0 = at−1, ηρ,0 = 0,

ηh,0i = E(ηhi,t) = 0 and h0
i = hi,t−1 for i = 1, 2. The linearization is given by

at = at−1 + (at−1 + ηρt
exp(h2,t−1)

exp(h1,t−1)
)(ηh2,t − ηh1,t) + ηρt

exp(h2,t−1)

exp(h1,t−1)
. (27)

This linearization features an approximation error, except when the innovations to

stochastic volatility offset each other, i.e. the ratio of volatilities is constant.

The approximation error is defined as

errort = at − ât (28)

40



where at and ât denote the resulting parameter under (26) and (27), respectively. The

bias associated with this linear transition function is given by

biast = 1{at>at−1}(ât − at)− (1− 1{at>at−1})(ât − at) (29)

where 1{at>at−1} is an indicator function, which ensures the correct sign of the bias.20

Figure 7 illustrates the quantitative effects of innovations to stochastic volatility

and of innovations to correlation on the approximation error and the bias for two initial

points (at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with exp (h2,t−1)

exp (h1,t−1)
= 1.21 The true

parameter at moves on an exponential hyperplane while the first order approximation

ât moves on a linear hyperplane, which touches the true hyperplane from below (above,

indefinite) for positive (negative, zero) values of at−1.

For the first point, when there are non-offsetting innovations to stochastic volatility,

then the approximation error is non-negative (non-positive) as the true value at is above

(below) the initial value at−1. Consequently, the bias is negative in either direction. In

other words, the first order approximation underestimates any transition from this

point. For the second point, the approximation error is, in general, non-negative since

the first order approximation touches the exponential hyperplane from below. Thus,

when the ratio of volatilities increases, the true value increases and the first order

approximation underestimates this transition. In contrast, it generally overestimates

the transition when the ratio of volatilities decreases.

Note that when the linear approximation in (27) is further restricted to exhibit ho-

moskedastically and normally distributed innovations, then these dynamic restrictions

become tighter such that the approximation error and the bias become larger.

Next, when the order of variables is changed, then ãt has a similar functional form

as at in (26), but the ratio of volatilities is inverted

ãt = ãt−1

exp (ηh1,t)

exp (ηh2,t)
+ ηρt

exp (h1,t)

exp (h2,t)
.

Consequently, when the ratio of volatilities increases then the equation of a∗t under-

estimates the true transition of at in the original ordering, while the dynamic equation

of ã∗t mechanically overestimates the true transition of ãt in the alternative ordering.

20For instance, when the true value falls and the approximate value falls by even more but both

remain positive, then the transition is overstated. However, a bias function without sign correction

assigns a negative value, indicating underestimation.

21 Notice the surface plots for a positive value of at−1 are a reflection for negative value of at−1.
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Figure 7: Approximation error and bias of linearization
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Panel (I): Approximation error
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Panel (II): Bias

The figure shows the approximation error and the bias for two initial values of

(at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with
exp (h2,t−1)
exp (h1,t−1)

= 1. The x-axis

and the y-axis show the range of the innovations to correlation and of the ratio of volatil-

ity.

The covariance terms σ∗12,t and σ̃∗12,t are proportional to {a∗t , g∗1,t} and {ã∗t , g̃∗2,t},
respectively. h1,t = g∗1,t and h2,t = g̃∗2,t are left unrestricted. It follows that the bias in

the contemporaneous parameter carries over to the covariance terms.
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Proof of Property “Posterior distribution of at and ãt under homoskedasticity”.

Assume that yt is generated by[
y1,t

y2,t

]
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])
.

Define for yt and ỹt = Pyt, where P is a permutation matrix exchanging rows, the

respective covariance matrices Σt = A−1
t DtD

′
tA
−1′

t and Σ̃t = Ã−1
t D̃tD̃

′
tÃ
−1′

t . In addition,

assume the variance of the first element on the diagonal of Dt and D̃t is equal to one.

The parameters associated with yt are {1, gt, at} and those with ỹt are {1, g̃t, ãt}. Due

to the special structure of the DGP, it follows that the prior distribution of at = ãt and

gt = g̃t is invariant to rotation of variables.22

Turning to inference, suppose the posterior draw for the initial value a0 = ã0, the

variance of the time-varying parameter S = S̃ and the variance of the transformed

second variable gt = g̃t ∀t.

Using the results in Chan (2017), the posterior distribution of a is given by

(a|y,D, a0, S) ∼ N(K−1
a ā, K−1

a )

where

Ka =



2
S

+ y1,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y1,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y1,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y1,T

2

exp(gT )


, ā =



a0
S
− y1,1y2,1

exp (g1)

− y1,2y2,2
exp (g2)

...

−y1,T−1y2,T−1

exp (gT−1)

−y1,T y2,T
exp (gT )


.

while the posterior distribution of ã is given by

(a|ỹ, D, a0, S) ∼ N(K̃−1
a

˜̄a, K̃−1
a )

where

K̃a =



2
S

+ y2,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y2,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y2,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y2,T

2

exp(gT )


, ˜̄a =



a0
S
− y2,1y1,1

exp (g1)

− y2,2y1,2
exp (g2)

...

−y2,T−1y1,T−1

exp (gT−1)

−y2,T y1,T
exp (gT )


22Notice that this does not imply that the elements in Σt and Σ̃t have the same distribution.
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Then, since ā = ˜̄a but Ka 6= K̃a unless y2
1,t = y2

2,t ∀t, it follows that the posterior

distribution of a and ã is different. Note that the backward solutions for the individual

elements in a and ã differ, whereas they add up to the same sum in the time-invariant

case.23 Consequently, the likelihood information leads to a rotationally non-invariant

posterior distribution for the time-varying parameter.

23If a is time-invariant, then Ka = 1
exp (2g2)

∑T
t=1 y

2
1,t and K̃a = 1

exp (2g1)

∑T
t=1 y

2
2,t with exp (g1) =

exp (g2) and
∑T

t=1 y
2
1,t =

∑T
t=1 y

2
2,t implies that Ka = K̃a. ā = ˜̄a as ā = 1

exp (2g2)

∑T
t=1 y1,ty2,t

˜̄a = 1
exp (2g1)

∑T
t=1 y1,ty2,t. Hence, the posterior distribution of a and ã is the same under alternative

orderings of the variables.
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B Additional Monte Carlo simulation

B.1 Robustness: estimated hyperparameters

The influence of the hyperparameters on the innovation variance is different across

models, orderings and alternative DGPs. Thus, it is not clear whether this prior spec-

ification for the hyperparameters resembles a fair model comparison. For this reason,

the CMSV and DC-CMSV models and their hyperparamaters are re-estimated using

the algorithm of Amir-Ahmadi, Matthes, and Wang (2018).

Tables 4 – 5 show the results for all three DGPs. Overall, the choice of the hyper-

parameters has a limited effect on the results as the posterior median of the estimated

hyperparameters is close to, generally, slightly smaller than the chosen hyperparame-

ters. Broadly speaking, the performance metrics improve slightly in all dimensions and

for both models.
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Table 4: Estimated correlation

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.030 0.029 0.023 0.038 0.029 0.371 -0.219

sine 0.098 0.086 0.064 0.018 0.090 0.023 0.534 0.942

fastsine 0.245 0.256 0.087 0.008 0.115 0.010 0.390 0.931

step 0.081 0.062 0.045 0.016 0.068 0.021 0.493 0.795

ramp 0.119 0.110 0.068 0.020 0.098 0.027 0.546 0.942

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.061 0.039 0.048 0.025 0.076 0.031 0.308 -0.216

sine 0.119 0.089 0.106 0.015 0.146 0.020 0.275 0.945

fastsine 0.244 0.257 0.142 0.006 0.185 0.008 0.176 0.936

step 0.105 0.068 0.080 0.015 0.121 0.019 0.287 0.801

ramp 0.139 0.113 0.111 0.018 0.154 0.023 0.296 0.944

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.024 0.021 0.031 0.026 0.296 -0.181

sine 0.087 0.083 0.043 0.020 0.061 0.026 0.748 0.942

fastsine 0.251 0.256 0.051 0.010 0.067 0.012 0.587 0.926

step 0.066 0.057 0.029 0.015 0.042 0.019 0.671 0.826

ramp 0.111 0.108 0.046 0.023 0.068 0.030 0.742 0.942

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic

volatility. A bold figure highlights the best model in each panel and row.
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Table 5: Estimated covariance

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.288 0.155 0.030 0.224 0.042 0.445 0.976

sine 0.215 0.200 0.102 0.021 0.154 0.030 0.666 0.983

fastsine 0.330 0.331 0.112 0.010 0.170 0.014 0.607 0.993

step 0.251 0.225 0.107 0.020 0.165 0.028 0.591 0.985

ramp 0.235 0.222 0.105 0.024 0.161 0.035 0.636 0.979

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.438 0.393 0.202 0.038 0.344 0.059 0.486 0.987

sine 0.292 0.255 0.177 0.021 0.308 0.033 0.566 0.993

fastsine 0.401 0.395 0.207 0.009 0.353 0.014 0.472 0.998

step 0.353 0.303 0.169 0.021 0.303 0.034 0.557 0.994

ramp 0.316 0.283 0.182 0.024 0.315 0.039 0.544 0.991

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.219 0.134 0.024 0.177 0.032 0.349 0.956

sine 0.172 0.165 0.077 0.022 0.109 0.029 0.689 0.967

fastsine 0.295 0.296 0.062 0.011 0.085 0.014 0.738 0.983

step 0.192 0.178 0.082 0.017 0.119 0.023 0.574 0.970

ramp 0.192 0.185 0.082 0.024 0.119 0.034 0.649 0.961

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic

volatility. A bold figure highlights the best model in each panel and row.
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B.2 Robustness: stationary state dynamics

Another concern might be misspecification of the volatilities. The true DGP as-

sumes stationary volatility dynamics. This form of misspecification may affect the

ability of the DC-CMSV model to control for heteroskedasticity of the data, which is

important to obtain almost rotationally invariant estimates. Therefore, both models

are re-estimated assuming a stationary law of motion for volatility and parameter of

contemporaneous relation.

Tables 6 – 7 show the results for all three DGPs. The statistics indicate that the

main result is not affected, however, some features stand out. The estimated covariance

and value-at-risk are slightly more accurate than those in the main results. However,

distance and similarity metrics indicate more distinct estimates. This result is the con-

sequence of a more distinct posterior distribution of the parameter of contemporaneous

relation under an autoregressive process. Nevertheless, all estimates are broadly similar

under the DC-CMSV model.
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Table 6: Estimated correlation

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.028 0.028 0.029 0.038 0.036 0.437 -0.370

sine 0.101 0.092 0.065 0.021 0.092 0.027 0.508 0.901

fastsine 0.224 0.229 0.118 0.046 0.157 0.058 0.470 0.694

step 0.081 0.063 0.047 0.022 0.069 0.028 0.486 0.700

ramp 0.121 0.114 0.070 0.027 0.100 0.035 0.526 0.875

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.063 0.035 0.048 0.033 0.078 0.042 0.348 -0.345

sine 0.122 0.095 0.111 0.019 0.151 0.024 0.249 0.903

fastsine 0.235 0.232 0.165 0.041 0.215 0.052 0.226 0.702

step 0.106 0.069 0.084 0.022 0.125 0.028 0.281 0.694

ramp 0.141 0.118 0.116 0.025 0.160 0.032 0.275 0.877

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.023 0.025 0.024 0.032 0.031 0.364 -0.368

sine 0.090 0.088 0.043 0.023 0.060 0.029 0.730 0.905

fastsine 0.215 0.226 0.092 0.052 0.120 0.065 0.650 0.688

step 0.065 0.058 0.031 0.020 0.043 0.026 0.656 0.740

ramp 0.113 0.111 0.046 0.029 0.068 0.038 0.725 0.878

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic

volatility. A bold figure highlights the best model in each panel and row.
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Table 7: Estimated covariance

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.286 0.152 0.038 0.217 0.053 0.519 0.934

sine 0.215 0.201 0.101 0.024 0.152 0.034 0.685 0.977

fastsine 0.311 0.303 0.158 0.052 0.243 0.076 0.517 0.804

step 0.249 0.224 0.107 0.027 0.162 0.037 0.639 0.977

ramp 0.235 0.222 0.105 0.032 0.160 0.045 0.650 0.957

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.440 0.394 0.195 0.051 0.331 0.082 0.547 0.951

sine 0.293 0.257 0.181 0.025 0.312 0.040 0.573 0.990

fastsine 0.394 0.367 0.236 0.053 0.408 0.088 0.437 0.874

step 0.353 0.303 0.170 0.031 0.301 0.049 0.590 0.988

ramp 0.317 0.284 0.185 0.033 0.319 0.053 0.551 0.980

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.236 0.216 0.139 0.029 0.183 0.038 0.414 0.900

sine 0.171 0.164 0.076 0.024 0.105 0.032 0.724 0.956

fastsine 0.264 0.266 0.125 0.053 0.174 0.072 0.555 0.735

step 0.190 0.176 0.088 0.022 0.124 0.029 0.626 0.961

ramp 0.191 0.185 0.083 0.031 0.117 0.042 0.671 0.922

(c) Low Volatility DGP

The table shows the performance metrics for different scales for innovations to stochastic

volatility. A bold figure highlights the best model in each panel and row.
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C Revisiting Primiceri’s (2005) application

C.1 Sensitivity of reduced-form parameters

Figure 8: Estimated B̃t’s (CMSV-TVP-VAR)

Inflation Unemployment Interest rate

The figure depicts the posterior median of the time-varying VAR parameters for each

equation in the respective column for all possible variable orderings obtained from the

CMSV-TVP-VAR.
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Figure 9: Estimated B̃t’s (DC-CMSV-TVP-VAR)

Inflation Unemployment Interest rate

The figure depicts the posterior median of the time-varying VAR parameters for each

equation in the respective column for all possible variable orderings obtained from the

DC-CMSV-TVP-VAR.
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Figure 10: Estimated Σ̃t’s (CMSV-TVP-VAR)

The figure shows the posterior median of the correlation (corr), the covariance (cov) and

the volatility (vol) of the reduced-form residual of inflation (πt), unemployment (ut) and

the interest rate (it) for all possible orderings obtained from the CMSV-TVP-VAR.
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Figure 11: Estimated Σ̃t’s (DC-CMSV-TVP-VAR)

The figure shows the posterior median of the correlation (corr), the covariance (cov) and

the volatility (vol) of the reduced-form residual of inflation (πt), unemployment (ut) and

the interest rate (it) for all possible orderings obtained from the DC-CMSV-TVP-VAR.
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C.2 Sensitivity of structural analysis

Sensitivity structural analysis

Figure 12: Replication of Figure 1

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the posterior mean, 16th and 84th percentiles of the standard deviation

of (a) the residuals of the inflation equation, (b) the residuals of the unemployment

equation and (c) the residuals of the interest rate equation or monetary policy shocks.
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Figure 13: Replication Figure 2

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts (a) impulse response of inflation to monetary policy shocks in 1975:I,

1981:III, and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th

and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th

and 84th percentiles, (d) difference between the responses in 1981:III and 1996:I with

16th and 84th percentiles.
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Figure 14: Replication Figure 3

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts (a) impulse response of unemployment to monetary policy shocks in

1975:I, 1981:III, and 1996:I, (b) difference between the responses in 1975:I and 1981:III

with 16th and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I

with 16th and 84th percentiles, (d) difference between the responses in 1981:III and 1996:I

with 16th and 84th percentiles.
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Figure 15: Replication Figure 4

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in inflation with

16th and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c)

response after 20 quarters, (d) response after 60 quarters.
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Figure 16: Replication Figure 5

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in inflation.
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Figure 17: Replication Figure 6

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in the unem-

ployment rate with 16th and 84th percentiles. (a) Simultaneous response, (b) response

after 10 quarters, (c) response after 20 quarters, (d) response after 60 quarters.
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Figure 18: Replication Figure 7

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts the interest rate response to a 1% permanent increase in the unem-

ployment rate.
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Figure 19: Replication Figure 8

DC-CMSV-TVP-VAR CMSV-TVP-VAR

Panel (I): Original ordering, y123
t = [πt, ut, it]

′

Panel (II): Reverse ordering, y321
t = [it, ut, πt]

′

The figure depicts a counterfactual historical simulation drawing the parameters of the

monetary policy rule from their 1991-1992 posterior. (a) Inflation, (b) unemployment.
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D Revisiting Cogley, Primiceri, and Sargent’s (2010)

application

Figure 20: Trend inflation

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for trend inflation of the GDP deflator from

TVP-VARs with homoskedastic and heteroskedastic parameter innovations for B̃t’s in

the left panel (a) and the right panel (b), respectively.
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Figure 21: Inflation volatility

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for inflation volatility of the GDP deflator from

TVP-VARs with homoskedastic and heteroskedastic parameter innovations for B̃t’s in

the left panel (a) and the right panel (b), respectively.
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Figure 22: The effect of unemployment news on expected inflation

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for expected GDP price deflator inflation based

on a one standard deviation increase of the logit of the unemployment rate from TVP-

VARs with homoskedastic and heteroskedastic parameter innovations for B̃t’s in the left

panel (a) and the right panel (b), respectively.
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Figure 23: Conditional and unconditional Phillips correlations

(a) Homoskedastic innovations for B̃t’s (b) Heteroskedastic innovations for B̃t’s

The figure depicts the posterior median for conditional and unconditional Phillips corre-

lations from TVP-VARs with homoskedastic and heteroskedastic parameter innovations

for B̃t’s in the left panel (a) and the right panel (b), respectively.
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