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Abstract

This paper develops a global solution method to solve large state space macro-finance

models using machine learning. Our new method, an artificial neural network expec-

tation algorithm, is not only considerably faster but also as precise and more scalable

than the standard parametrized expectations algorithm. We illustrate the advantages of

the method in an optimal fiscal policy problem with a large and highly multicollinear set

of state variables. We solve the model with multiple maturities and Epstein-Zin pref-

erences and explain in detail how to use the artificial neural network in this context.

To conclude, we suggest two relevant applications in asset pricing and learning, and

financial intermediation with endogenous default.
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JEL classification: C63, E32, E37, E62, G12.

As noted in Mullainathan & Spiess (2017), applying machine learning to economics re-

quires finding relevant tasks and, specifically, problems where prediction plays a crucial role.

In this particular application, we are interested in efficiently and accurately generating pre-

dictions for various expectation terms. We find that an artificial neural network arrives at
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the same solution as the one calculated by standard methods, but in a lesser time and in a

more scalable way.

In general, machine learning techniques are particularly useful when dealing with a large

number of state variables and when the explicit relation between the predictors and predicted

variables is not known. In this paper, we suggest that machine learning should not be

considered only for its possible econometrics applications but also as a handy computational

tool to solve large state space problems. In this last context, machine learning can be used

for optimization or in the context of global approximation methods.

On the one hand, consider two mainstream and widely used dynamic programming (DP)

methods in economics: policy function and value function iteration. Thanks to the introduc-

tion of machine learning, methods like neuro-dynamic programming allow to attack larger

state space problems through the combination of DP techniques, simulation, and iterative

procedures to better approximate optimal cost (or policy) functions.

On the other hand, global approximation methods are gaining more and more popularity

over local ones. Global methods often rely on the projection of relevant policies on the

information set. In this paper, we present an application of projection methods and machine

learning in solving an optimal fiscal policy problem. In particular, we use an artificial neural

network to solve a Ramsey taxation problem with incomplete markets. We consider this

application particularly relevant for several reasons. Firstly, the state space that needs to

be considered explodes in function of the length of the maturities and the number of bonds.

Secondly, this class of problems includes forward-looking constraints and the commonly

used recursive representation (Bellman equation) cannot be adopted in this case. Following

Marcet & Marimon (2011), we formulate the recursive Lagrangian to solve for the time-

inconsistent optimal contract under full commitment. When markets are incomplete the

Ramsey planner needs to keep track of all the promises made in the previous periods. This

requires to add extra state variables, which in turn increase the state space and creates history

dependence. Thirdly, the state variables tend to be highly multicollinear, requiring further

extensions to the standard techniques: the standard Parametrized Expectations Algorithm

(PEA) is replaced by the so called Condensed PEA. Our method becomes particularly useful

as the model becomes increasingly complex: the length of the longest maturity and the
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number of debt instruments increase. A closely related paper to ours is Duarte (2018) who

proposes an application of machine learning to macro-finance models. In particular he uses

neuro-dynamic programming to replace polynomials in approximating the value function and

solves the Hamilton-Jacobi-Bellman equation. Our method is different from his in multiple

ways. First, rather than approximating the value function, we approximate the expected

value terms. Secondly, our method does not rely on a continuous time representation of the

model and lastly, it does not require to build a grid and does not suffer from the curse of

dimensionality. The use of grid free methods comes at a cost: the state variables tend to be

highly collinear. However artificial neural networks prove to be robust to multicollinearity.

The paper is organized as follows. Section 1 presents a baseline version of a model where

government can issue only one type of non state-contingent bond. Section 2 extends the

model to a generic N non-state contingent bonds with different maturities and Epstein-Zin

preferences. Section 3 outlines a generic solution method for a generic N bonds model. We

report results for the one, two and three bonds cases comparing our method with the standard

approach. We also report the solution for the two bonds case with Epstein-Zin preferences.

Section 4 suggests other two relevant applications in finance and macroeconomics. Section

5 concludes.

1 Illustrative case: one bond economy

1.1 Setting

The model we consider in this section is the one proposed in Aiyagari et al. (2002). It

is a version of the stochastic neoclassical model with incomplete markets and a Ramsey

planner. The economy is populated by a representative household that has preferences over

consumption and leisure and maximizes the expected lifetime utility:

E0

∞∑
t=0

βt[u(ct) + v(lt)]

Subject to the budget constraint:

ptb
N
t + ct = (1− τt)(1− lt) + bNt−1
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Where the superscript on bt indicates that it is a N -periods maturity bond. In each period

the aggregate endowment in the economy is A units that can be used for consumption, leisure

and government expenditure. This leads to the aggregate resource constraint ct+gt = A− lt,

where A− lt is the period’s GDP. The government needs to finance an exogenous stream of

government expenditure {gt}∞t=0. It does that by setting proportional labor taxes τt and by

issuing non state contingent bonds with maturity of N periods, sold at the price pt which,

at the optimum, it coincides with the household’s stochastic discount factor. This gives the

following budget constraint for the government:

gt + bNt−1 = τt(1− lt) + ptb
N
t

For simplification we assume that government can buy back and reissue the entire stock of

the outstanding debt in each period, also known as the buyback assumption in the literature.

The purpose of the government is to solve the Ramsey taxation problem: set taxes and issue

debt to maximize welfare over the competitive equilibrium outcomes. Using the Primal

approach and assuming upper and lower bound for government debt, we can express the

government’s problem as:

max
{ct}∞t=0,{bt}∞t=0

E0

∑
t

βt [u(ct) + v(A− ct − gt)]

Subject to a sequence of time t measurability constraints1:

b
(N)
t βNuc,t+N − bNt−1βN−1uc,t−1+N − gtuc,t + (uc,t − vl,t)(gt + ct) = 0

And borrowing limits:

M̄N

βN
≥ bNt

MN

βN
≤ bNt

The optimality conditions are:

uc,t − vl,t + λt(ucc,tct + uc,t + vll,t(ct + gt)− vl,t) + ucc,t(λt−N − λt−N+1)b
N
t−N = 0 (1)

λt =
Et(uc,t+Nλt+1)

Et(uc,t+N)
(2)

bNt β
NEt(uc,t+N) = bNt−1β

N−1Et(uc,t+N−1)− gtuc,t − (uc,t − vl,t)(gt + ct) (3)

1See AMSS (2002) for details on how to use the recursive lagrangian approach in this context
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Where λt is the multiplier on time t period measurability constraint. By issuing debt

at time t, the government commits to increase taxes, or reissue debt at time t + N . Such

past actions must be taken into account by the government, when it sets taxes at any of the

periods between t and t+N . That is why all the lags of the state variables up to N form a

state space. More formally, the Ramsey planner’s relevant state variable vector Xt is:

Xt =

{
gt, {λt−i}Ni=1, {bit−i}Ni=1

}
The focus and the main contribution of this paper is on the solution method. Therefore,

we abstain from performing a calibration and, instead, assign reasonable values to model

parameters which can be found in Table 6 in Appendix D. For now, we use a standard

CRRA utility for both consumption and leisure.

1.2 Solution

Because the state space includes 2N+1 variables, which are highly multicollinear, the model

is hardly solvable using standard methods, such as Parametrized Expectations Algorithm

(PEA). In general, the expected value terms in the first order conditions need to be approx-

imated using some functions of a core set2 of the state variables. The model can be solved

by iterating on the optimality conditions and updating the approximating functions for the

unknown expected terms until the approximated expected value becomes consistent with the

dynamics of the system. That is: parametrize the expected value terms with some functions

of the state variables, iterate on the system of stochastic difference equations (1)-(3) for a

large time horizon T , perform regressions of equations (4)-(6) (given the model generated

data) and obtain the new coefficients for the approximating functions. Iterate till conver-

gence: when the predicted dynamic of the system doesn’t change anymore and the predicted

values on the expectations are accurate enough.

More formally, the solution involves approximating the following expectations as a func-

2A subset of the entire information set is selected to avoid multicollinearity
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tion of the state variables:

Et(uc,t+N) ' f1(gt, {λt−i}Ni=1, {bit−i}Ni=1) (4)

Et(uc,t+N−1) ' f2(gt, {λt−i}Ni=1, {bit−i}Ni=1) (5)

Et(uc,t+Nλt+1) ' f3(gt, {λt−i}Ni=1, {bit−i}Ni=1) (6)

In the next subsections we briefly describe the existing algorithm in literature and our

approach, concluding with a comparison between them.

1.2.1 Condensed PEA

The solution method existing in literature, capable to deal with the multicollinearity issue

is called Condensed PEA. The following is a brief high level description of how it works (see

Faraglia et al. (2014b) for more details):

1. Parametrize the 3 expectations in equations (1)-(3) as functions of a subset of state

variables (called core set) and given an initial guess of the polynomials parameters3

� Set the bounds for the bond (see Maliar and Maliar (2003))

� Simulate the model given the parameters

� Using the simulated data, run a regression of each element on the core variables

to get the new parameters values

� Iterate and stop when the prediction matches the simulated data

2. Regress the remaining state variables on the core set and save the residuals. Then

regress the realized values of the 3 expectations on the core set and the saved residuals.

Add these residuals, multiplied by the estimated coefficients, to the core set and go

back to point 1 till convergence on the path of debt is reached

This method keeps extracting orthogonal components from the information set, similarly

to the Principle Component Analysis (PCA), but the number of factors does not have to

3Initial parameters can be given by a simulated sequence with {bt}Tt=0
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be decided ex-ante. According to our practice, commonly used methods to deal with multi-

collinearity, such as PCA or Ridge and Lasso regressions, could not converge to any reliable

solution.

1.2.2 Solving with Artificial Neural Networks (ANN)

We explore the possibility of using machine learning in this context because of two salient

features of this class of algorithms: 1. Robustness to multicollinearity. 2. Non-parametric

nature, which does not require commitment to a pre-specified functional form. In particular,

we decided to use an ANN with the characteristics specified in Table 1. Neural networks are

mainly based on the simulation of properly linked artificial neurons, which receive stimuli

(inputs) and elaborate them. Each input, connected to each neuron, is multiplied by a

specific weight. All the results of these multiplications are added and, if the sum exceeds

a certain threshold, the neuron activates by activating its output (neurons are modeled as

transfer functions). The weight indicates the synaptic efficacy of the input line and serves

to quantify its importance. A very important input will have a high weight, while a less

important input will have a lower weight. Neural networks can feature multiple layers and

each layer can have a specific number of inputs. Increasing the number of layers and neurons

increases the capacity of the network to learn but, at the same time, can potentially lead

to overfitting and slow down computation in the learning phase. We explain how to choose

the number of neurons optimally later in this section. After weights are assigned with initial

values, data can be divided into two groups: training set and validation set. The training

set is used for the learning phase, where the network produces outputs, given initial weights,

and compare its outputs with the values in the training set. The error resulting from this

comparison can be used by a training algorithm to adjust the weights in order to match the

data in the training set. An epoch is one complete presentation of the training set to the

neural network. The learning rate represents the speed at which the neural network learns.

After having been trained, the network enters a validation phase. In this phase outputs are

produced using the inputs associated with the data points in the validation set and given

the weights computed during the learning phase. Produced outputs and realized ones are

compared, for example by calculating the Mean Squared Error (MSE) which represents the
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prediction power of the neural network out-of-sample.

Parameter Value

Hidden layers 1

Neurons 7

Transfer function Hyperbolic tangent sigmoid

Training algorithm Gradient descent with adaptive learning rate

backpropagation

Learning rate 0.001

Ratio to increase learning rate 1.01

Ratio to decrease learning rate 0.9

Epochs 1000

Table 1: ANN specifications

We chose to operate with only one layer since a single-hidden layer ANN is faster and,

at the same time, it is perfectly capable of catching all the non linearities we might need in

this application. The number of neurons is calibrated in our simulations to avoid overfitting.

In particular, given the parameters in Table 6, the number of neurons has been chosen

such that the MSE calculated out-of-sample (on the validation set) is minimized. This is

to maximize the prediction power of the ANN and, at the same time, have the highest

number of neurons that provides the best fit on the training set. In general, more neurons

always provide a better fit in-sample. The problem is the fitting out-of-sample which, after a

certain point, stops to improve and starts to diverge. We implement this intuition choosing

the maximum number of neurons such that the fitting out-of-sample is not worsening. The

learning rate is chosen to be small on purpose. Intuitively, the learning rate describes how

quickly an ANN abandons old beliefs for new ones. In this particular application we are

concerned in obtaining a stable solution, which should fluctuate as little as possible between

iterations (given the unstable nature of the problem) and, therefore, we decided to keep the

learning rate small. We allow for adaptive learning with asymmetric increasing/decreasing

ratio, privileging the decreasing side. This is to be conservative and create continuity among
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solutions calculated in different iterations.

The following points summarize how the solution algorithm works in this case:

� Start with an initial guess for the weights of the ANN (initializing sequences are gen-

erated as described above)

� Use the entire information set

{
gt, {µt−1}Ni=1, {bit−i}Ni=1

}
as an input of the ANN and

get predictions for Et(uc,t+N), Et(uc,t+N−1) and Et(uc,t+Nλt+1).

� Combine predictions and optimality conditions to generate an implied model dynamics

� Use the model generated data to perform supervised learning of the ANN

� Start again from the beginning with the newly trained ANN till convergence is reached

(predictions match with the implied dynamics)

The main advantage of this method comes from the possibility to feed the entire infor-

mation set to the ANN. The regression approach needs to perform additional cycles in order

to find a core set of regressors able to deliver enough prediction power to avoid inaccuracies

due to multicollinearity. In the ANN approach, neurons connected to redundant information

are likely to switch off automatically (weights go to zero), or to adjust their importance in

accordance to the weights of the other neurons connected to the same redundant informa-

tion. These adjustments, which automatically happen during the learning phase, offer the

possibility to deal more efficiently with an increasingly big information set, as shown in the

following example.

1.2.3 Performance comparison

We report an example where we solve the same problem in the same computational envi-

ronment: one bond with 10 periods maturity, same exogenous sequence {gt}Tt=0 (generated

as white noise with positive constant mean) and parameters values as reported in Table 6 in

Appendix D.
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ANN C. PEA

Projected term Residual Residual% Residual Residual%

Et(uc,t+Nλt+1) 0.037 2.3% 0.041 2.7%

Et(uc,t+N) 0.155 2.2% 0.181 2.6%

Et(uc,t+N−1) 0.155 2.2% 0.185 2.6%

Time 801s 14080s

Table 2: Bonds bounds are the natural ones (in this case around 10 times the GDP).

Both methods converge to comparable solutions: The mean absolute deviation between

the debt path calculated through C.PEA and ANN is 0.050. Residual = 1
T

∑∣∣∣Yi − Êi∣∣∣ and

Residual% = 1
T

∑∣∣∣Yi−ÊiYi

∣∣∣.
As shown in Table 3, the ANN approach provides slightly more precise forecasts on

all three expectation terms. The key message from this table is that, given a comparable

prediction precision and a comparable solution, the ANN approach takes around 95% less

time. The main reason is that the Condensed PEA needs to try different combinations

of core regressors, whereas the ANN needs to iterate only one time digesting the entire

information set at once. Moreover, at each step of the Maliar bounds, or at each refinement

step once the Maliar bounds are completely open, the Condensed PEA approach requires

to run 3 separate regressions whereas the ANN approach requires only one training phase

for all three predictions. Using the same ANN to predict the three outputs at once is not

only faster but might also help catching correlations between predicted terms. On the other

hand, it requires more time to train the ANN than to run a regression and the training time

increases with the number of layers. However, a single-layer ANN is perfectly capable to

capture the nonlinearities in this model. In summary, the ANN approach required 1 single

iteration on the information set which took 801s, whereas the Condensed PEA approach

required 12 iterations on the information set (to find the right combination of regressors)

and, each of them, required on average around 1173s.
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1.3 An example with a predictable g process

For illustration purposes, we present our solution to a model where government expenditure

follows an AR(1) process. As shown in Figure 1, the government debt dynamic is closely

linked to the expenditure process - periods when both are decreasing coincide. At the same

time, bt is more persistent4 than gt and there is a tendency for the government to accumulate

assets in the long-run as found in Aiyagari et al. (2002). The dynamics of other model

variables, as well as the prediction errors, are presented in Figures 6 and 7 in Appendix A.

As shown in Figure 3, the ANN offers particularly good predictions for the Et[uc,t+Nλt+1]

term. Even though the forecasts of the terms involving only marginal utility leave room for

higher residuals. This fact is reasonable since the rational expectation for consumption N

periods ahead is the steady state.

0 50 100 150 200 250 300 350

Time (t)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Debt: b
t

Gvt expenditure

Figure 1: Solution to the one bond model using neural network. gt follows AR(1) process

In general, we would like to emphasize several important observations from our compu-

tational results. First, while increasing the length of the maturity increases the number of

relevant state variables, the time it takes to solve the model remains almost unchanged. This

4Even in other solutions when gt is i.i.d. process , bt is not. This is consistent with the results found in

AMSS (2002)
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is, once again, because the ANN can use all the state variables at once even if they are highly

correlated. In contrast, the regression approach requires an increasing number of iterations

to find the best set of orthogonal elements of the state variables. In this sense this solution

method is more scalable, and we can use it to solve more complicated models with multiple

maturities as showed in the next section. Second, we discovered that the ANN approach

tends to be more robust to different specifications of the gt process - which is probably due to

its non-parametric nature which can handle jumps and non-linearities induced by variation

in the exogenous process.

2 General case: model with N bonds and Epstein-Zin

preferences

2.1 Adding Epstein-Zin preferences

Matching the relevant moments in the bonds data can be difficult with the model just

considered. Usual practice is to introduce Epstein-Zin preferences to separate risk-aversion

and elasticity of intertemporal substitution parameters.

In this model the representative household has preferences:

Vt = [(1− β)U(ct, lt)
1−ρ + β(EtV 1−γ

t+1 )
1−ρ
1−γ ]

1
1−ρ

where lt = 1− ht. Subject to a budget constraint:

ct + ptbt+1 = bt + (1− τt)ht

A one-period bond price pt is the expected value of the stochastic discount factor (SDF):

pt = βEtMt(Vt+1)

(
Ut+1

Ut

)−ρ
Uc,t+1

Uc,t

where Mt(Vt+1) =
(

Vt+1

Rt(Vt+1)

)ρ−γ
(see Appendix B for more details).

2.2 Implementability and measurability constraints

Furthermore, we extend the model to include a generic number of bonds N to study the

optimal maturity structure. In this setting, the government can decide to issue non-state
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contingent securities bit with maturity i and we assume full buy-back.

The government budget constraint is:

N∑
i=1

pi−1,tb
i
t = τtht − gt +

N∑
i=1

pi,tb
i
t+1

Combining the technology constraint, ct + gt = ht, with the household’s labor optimality

condition, 1− τt = Ul,t/Uc,t, yields an expression for surplus:

st = τtht − gt = ct − (1− τt)ht = ct −
Ul,t
Uc,t

(ct + gt)

The government problem is essentially identical to before, except that now bond prices

are discounted with a SDF that contains the ratio of the agent’s continuation value and its

certainty equivalent:

N∑
i=1

bitEtβi−1Mt(Vt+i−1)

(
Ut+i−1
Ut

)−ρ
Uc,t+i−1
Uc,t

= st +
N∑
i=1

bit+1EtβiMt(Vt+i)

(
Ut+i
Ut

)−ρ
Uc,t+i
Uc,t

The computational complexity to solve this problem increases significantly; besides that

all the lagged values of bit, up to its maturity, become relevant state variables, additional

state variables are required to keep track of the recursive utility constraint in the household

problem. Epstein-Zin preferences does not just complicate the problem introducing more

state variables. An additional layer of complexity comes from the non-convexities in the

implementability constraint, as mentioned in (Karantounias, 2017). First order conditions

methods, in this context, might lead to a wrong solution. In order to address this issue,

we solve the system of first order conditions starting from many different initial points and

evaluating welfare at each corresponding solution.

2.2.1 Sequential formulation of the Ramsey problem

The primal approach to the Ramsey problem yields the following recursive Lagrangian:

max
{ct,bit+1,µt,Vt}∞t=0

L = V0 + E0

∞∑
t=0

βt

{
µt

(
U−ρt Uc,tst +

N∑
i=1

Etβibit+1Mt(Vt+i)U
−ρ
t+iUc,t+i−

N∑
i=1

Etβi−1bitU
−ρ
t+i−1Uc,t+i−1Mt(Vt+i−1)

)
+

N∑
i=1

ξiU,t(B
U − bit+1) +

N∑
i=1

ξiL,t(b
i
t+1 −BL)

}
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Subject to:

Vt = [(1− β)U(ct, 1− ct − gt)1−ρ + β(EtV 1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ

The first order condition with respect to bit+1, yields the following intertemporal expres-

sion for the promise keeping Lagrange multiplier µ:

µt =
[
EtMt(Vt+i)U

−ρ
t+iUc,t+i

]−1 [Etµt+1Mt+1(Vt+i)U
−ρ
t+iUc,t+i −

ξUt
βi

+
ξLt
βi

]
In order to calculate the first order condition with respect to ct, it is necessary to calculate

an expression for the derivative of welfare V0 with respect to ct. Note that V0 contains all

the consumption path from 0 throughout ∞. In Appendix B we explain how to find an

expression for ∂V0
∂ct(gt)

5, with which is possible to find the following optimality condition:

V ρ
0 (1− β)X0,tU

−ρ
t

∂Ut
∂ct(gt)

+ µt

(
∂U−ρt Uc,t
∂ct(gt)

st +
∂st
∂ct

U−ρt Uc,t

)
+

∂U−ρt Uc,t
∂ct(gt)

N∑
i=1

(µt−iMt−i(Vt)− µt−i+1Mt−i+1(Vt)) b
i
t−i+1 + λVt V

−ρ
t (1− β)U−ρt

∂Ut
ct(gt)

= 0

where λVt is the time-t Lagrange multiplier associated with the recursive constraint and

Xt1,t2 ≡
∏t2−t1

k=1 Mt1+k−1(Vt1+k) with Xt1,t2 ≡ 1,∀t2 ≤ t1. Note that X admits a recursive

representation6.

The first order condition with respect to Vt (see Appendix B) yields the following recursion

for λVt
7:

λVt =
N∑
i=1

(
µt−i

∂Mt−i(Vt)

∂Vt(gt)
− µt−i+1

∂Mt−i+1(Vt)

∂Vt(gt)

)
bit−i+1Uc,tU

−ρ
t + λVt−1

(
Vt−1
Vt

)ρ
Mt−1(Vt)

The first order condition with respect to µt just gives back the inter-temporal government

budget constraint.

CRRA preferences When ρ = γ Epstein-Zin preferences collapses into the CRRA case.

It is easy to verify that the above otpimality conditions collapse to the following set of

5 ∂V0

∂ct(gt)
= V ρ0 β

t(1− β)X0,tπ(gt|g0)U−ρt
∂Ut

∂ct(gt)
6Xt1,t2 ≡

∏t2−t1
k=1 Mt1+k−1(Vt1+k) =Mt2−1(Vt2)

∏t2−t1−1
k=1 Mt1+k−1(Vt1+k) =Mt2−1(Vt2)Xt1,t2−1

7 Where (see Appendix B): ∂Mt−i(Vt)
∂Vt

= (ρ− γ)Mt−i(Vt)
Vt

[
1−Mt−i(Vt)

1−γ
ρ−γ π(gt|gt−i)

]
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equations:

ct : uc,t − vl,t + λt
[
uc,t − vl,t + ucc,tc+ vll,t(ct + gt)

]
+

N∑
i=1

(λt−i − λt−i+1)b
i
t−iucc,t = 0

bit+1 : [Etuc,t+i]−1
[
Etµt+1uc,t+i −

ξiU,t
βi

+
ξiL,t
βi

]
λt :

N∑
i=1

bitEtβi−1
uc,t+i−1
uc,t

= st +
N∑
i=1

bit+1Etβi
uc,t+i
uc,t

3 Computational strategy

For illustrative purposes we describe in detail the computational strategy when ρ = γ. In

Appendix C, we describe a generalization of this strategy for the EZ case.

At every instant t the information set is It = {gt, {{bit−k}N−1k=0 }Ni=1, {λt−k}Nk=1}. Consider

projections of Etuc,t+i, Etλt+iuc,t+i and Etuc,t+i−1 onto It. We model these relationships

using one single-layer artificial neural network ANN (It) with the characteristics described

in Table 1. For example, in the two bonds case there are six8 terms to project and, if one

bond matures in 1 period, they reduce to five9. In particular, if the long maturity is N > 1

then the terms to approximate are the following:

ANN i
1 = Etuc,t+i for i = {1, N}

ANN i
2 = Etλt+iuc,t+i for i = {1, N}

ANN i
3 = Etuc,t+i−1 for i = {N}

The solution procedure is summarized by the following algorithm:

Given starting values λt−1 = 0 and initial weights for ANN 10, simulate a sequence of {ct},

{λt} and {bit} as follows:

1. Impose the Maliar moving bounds on debt (these bounds are particularly important

and need to be tight and open slowly since the ANN at the beginning can only make

accurate predictions around zero debt - that is our initialization point). Proper penalty

8Et(uc,t+N ), Et(uc,t+N−1), Et(uc,t+N−1λt+1), Et(uc,t+S), Et(uc,t+S−1), Et(uc,t+Sλt+1)
9Et(uc,t+S−1) is just uc,t

10The network can be initially trained imposing {bt} = 0
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functions are used instead of the ξ terms to avoid out of bound solutions, see Faraglia

et al. (2014b) for more details. Use forward-states on the following i equations:

∀i : λt = ANN i
1(It)−1

[
ANN i

2(It)−
ξiU,t
βi

+
ξiL,t
βi

]
Note that λt is now over identified. We tackle this problem by using the Forward-

States approach as described in Faraglia et al. (2014b). This involves approximating

the expected value terms with the state variables that are relevant at period t+ 1 and

invoking the law of iterated expectations11.

The equations to solve are:

∀i : λt =
[
EtANN i

1(It+1)
]−1 [EtANN i

2(It+1)−
ξiU,t
βi

+
ξiL,t
βi

]
2. Choose T big enough and find {ct} and {bit+1} that solve the following system of 2T

equations:

i. uc,t − vl,t + λt
[
uc,t − vl,t + ucc,tc+ vll,t(ct + gt)

]
+

N∑
i=1

(λt−i − λt−i+1)b
i
t−iucc,t = 0

ii.
N∑
i=1

bitβ
i−1ANN i

3(It) = UtUc,tst +
N∑
i=1

bit+1β
iANN i

1(It)

3. If the solution error is large, or a reliable solution could not be found, the algorithm

automatically restores the previous period ANN and tries to proceed with a reduced

Maliar bound 12.

4. If the solution calculated shrinking the bound at iteration i − 1 is not satisfactory,

the algorithm does not go back another iteration but uses the same ANN and tries to

lower the Boundi−1 again towards Boundi−2. Once a reliable solution is found, the

algorithm proceeds to calculate the solution for iteration i again, but with Boundi =

Boundi−1 + (Boundi−1−Boundi−2). In this way, if an error is detected multiple times

11For a detailed description of the procedure using polynomial regressions see Faraglia et al. (2014a) or

Faraglia et al. (2014b). Here we follow the same logic using the neural network
12If the unreliable solution has been detected in iteration i the algorithm restore the i − 1 environment

and tries to proceed with Boundi−1 = α ∗Boundi−1 + (1− α) ∗Boundi−2
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we guarantee that both Boundi and Boundi−1 keep shrinking toward Boundi−2 and

there must exist a point close enough to Boundi−2 such that the system can be reliably

solved with both Boundi−1 and Boundi.

5. If the solution found at iteration i is satisfactory, the ANN enters the learning phase

supervised by the implied model dynamics, the Maliar bounds are increased and a new

iteration starts again.

Keep repeating until the ANN prediction errors converge below a certain small threshold

and the simulated sequences of {bit}, and ct do not change13.

3.1 Two bonds: CRRA and EZ

In table 3 we compare computation times required to solve the two bonds problem when

the expectations are parametrized using an ANN against the Condensed PEA method. In

particular, we solve the model with an AR(1) process for gt with persistence parameter

of 0.8 and with a constant such that the mean of gt is 0.2. We run the code under the

same computational environment and parametrization, the only difference being the way it

approximates the expectation and we solve the model for 10 different realizations of gt using

both methods. The numbers in table 3 are the means over these simulations.

13There is no need to check λt which can be backed out analytically from the first order condition for ct
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ANN C. PEA

Projected term Residual Residual% Residual Residual%

Et(uc,t+Nλt+1) 0.017 1.1% 0.009 0.5%

Et(uc,t+N) 0.056 0.8% 0.035 0.5%

Et(uc,t+N−1) 0.049 0.7% 0.035 0.5%

Et(uc,t+S) 0.047 0.7% 0.009 0.5%

Et(uc,t+Sλt+1) 0.019 1.2% 0.037 0.5%

Time 2263s 17474s

Table 3: Bonds bounds are 100% the GDP. Mean absolute deviation between the debt

path calculated through C.PEA and ANN is 0.199 for long bond and 0.147 for short bond.

Residual ≡ 1
T

∑∣∣∣Yi − Êi∣∣∣ and Residual% ≡ 1
T

∑∣∣∣Yi−ÊiYi

∣∣∣
Compared to one bond case now there are even more possible parameter combinations

the condensed PEA needs to explore. In summary, methods converged to roughly the same

solutions, but Condensed PEA took on average 17474 seconds, whereas ANN took 2263

seconds.

For illustration purposes we solve the model with both CRRA and Epstein-Zin preferences

using the same process for government expenditure. Bottom panel of Figure 2 shows the

simulated path of the model with CRRA preferences. The two bonds move in opposite

directions: it is optimal for the government to borrow money using the long-term bond and

lending money using the short-term bond as in Angeletos (2002). Moreover, dynamics of

the two bonds are highly negatively correlated and, like in (Buerra and Nicolini, 2004) the

positions are large and volatile.
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Figure 2: CRRA: Solution to the 2 bonds case. g is an exogenous process generated as an

AR(1).

When the preferences are Epstein-Zin, the optimal debt portfolio is no longer that volatile.

Anmol Bhandari and Sargent (2017) took an important first step in this direction and use
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a perturbation method around current level of government debt to solve and calibrate the

model with two bonds. Their findings suggest that, after calibrating the model to match

the data on bond returns, the optimal portfolio does not hold any short position and the

allocation shares are around equal among different maturities. Our results using a global

solution method is consistent with this idea. As shown in Figure 3, for exactly the same

process of gt and keeping the remaining parameters fixed, now bond holdings are both

positive and small so that little re-balancing are required when an aggregate shock hits.
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Figure 3: EZ: Solution to the 2 bonds case. g is an exogenous process generated as an AR(1).

There might be multiple interesting ways to match the data, for example Anmol Bhandari

and Sargent (2017) use shocks on discount factor, labor efficiency and government expenses.
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We believe that matching financial data in other ways could lead to different optimal debt dy-

namics. Our efficient computational method would be fast enough to run simulated method

of moments.

3.2 The three bonds solution

We further explore the capabilities of the ANN by adding a medium term bMt bond to the

model with CRRA preferences. First thing that changes compared to the 2 bond case is the

correlation between different maturities. Solution to the two bonds case was showing almost

perfectly negatively correlated maturities (correlation was −0.9935), whereas now different

maturities are less negatively correlated as shown in the table 4. In particular, in the short-

run the government positions in the three bonds are negatively correlated with each others,

all around −0.5.

ρ(bS, bM) ρ(bS, bL) ρ(bM , bL)

Short-run -0.49 -0.52 -0.46

Long-run -0.43 -0.18 -0.16

Table 4: Correlations (ρ) between the short (S), medium (M) and long (L) term securities.

In figure 4 we report the short-run (first 50 periods) dynamics we obtained solving the

three bonds model. The long-run (1000 periods) solution is reported in Appendix A in figure

8. In the short run the debt positions are volatile, but not as much as in the case of two

debt instruments. In the long-run the government tends to accumulate assets and slowly

reduces taxes (from around 39% to 34%). As a consequence the short-term bond, used by

the government to lend money reach the lower bound14 and the government starts to use

long-term bonds to compensate the fluctuations in government expenditure. As a result,

position in the long-term bonds becomes even less negatively correlated with the holdings in

the short and medium bonds, as seen in the bottom row of table 4

14both upper and lower bounds are set at 100% the GDP
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Figure 4: Short-term dynamic of the 3 bonds problem. Bounds are set at 100% the GDP

and g follows an AR(1) process.

Lastly in figure 5 we present the short run predictions of the ANN. As can be seen from

the figure, projections residuals are the smallest for the expectations involving the recursive

multiplier λt. This result is reasonable as their values depend on the past debt, whereas

consumption is largely unpredictable. The increase in the computation time going from 2 to

3 bonds is lower than going from 1 to 2 bonds. The reason is that the ANN method for the

2 and 3 bonds cases is qualitatively the same: it just has to consider more inputs and two

more outputs. In table 5 we report the ANN prediction errors, which are very small.

22



0 50 100 150 200

Time (t)

5.4

5.6

5.8

6

6.2

Neural expectation estimate 
Realized

0 50 100 150 200

Time (t)

5.4

5.6

5.8

6

6.2

0 50 100 150 200

Time (t)

5.4

5.6

5.8

6

6.2

0 50 100 150 200

Time (t)

0.8

0.9

1

1.1

1.2

0 50 100 150 200

Time (t)

0.8

0.9

1

1.1

1.2

0 50 100 150 200

Time (t)

0.8

0.9

1

1.1

1.2

0 50 100 150 200

Time (t)

5.4

5.6

5.8

6

6.2

0 50 100 150 200

Time (t)

5.4

5.6

5.8

6

6.2

0 50 100 150 200

Iteration

-0.02

-0.01

0

0.01

0.02
Gvt surplus: 

t
*labor

t
-g

t

VS VS VS

VS VS VS

VSVS

Figure 5: First 200 periods Neural network predictions of the expected value terms versus

the realized sequences for the three bonds problem. Bounds are set at 100% the GDP. g

follows an AR(1) process.

ANN

Projected term Et[uc,t+S] Et[uc,t+M ] Et[uc,t+N ] Et[uc,t+Sλt+1] Et[uc,t+Mλt+1] Et[uc,t+Nλt+1] Et[uc,t+N−1] Et[uc,t+M−1]

Residual 0.048 0.069 0.081 0.013 0.015 0.018 0.069 0.048

Residual% 0.9% 1.2% 1.4% 0.2% 0.3% 0.3% 1.2% 0.9%

Time 1945s

Table 5: Residual = 1
T

∑∣∣∣Yi − Êi∣∣∣ and Residual% = 1
T

∑∣∣∣Yi−ÊiYi

∣∣∣
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4 Potential Other Applications

4.1 Models with Financial Intermediation and credit constraints

An area where machine learning could be promising is in solving models that feature kinks or

high non-linearities and, at the same time, have large state space. Such models are usually

solved with modifications of value function iteration, which might need many grid points to

properly capture kinks in the value function. At the same time, these methods are prone to

the curse of dimensionality. These features are shared by many models including financial

intermediation and possibility of government default. Consider a model by Bocola (2016) as

a recent example, which features risk neutral banks that intermediate between representative

consumers and firms. The value function of a representative bank is:

vb(n,S) = max
ab,ak,b′

EsΛ(S’,S)
{

(1− ψ)n′ + ψvb(n′,S)
}

where n is banks net worth and exit is stochastic with probability 1 − ψ. ab, ak and b′ are

respectively the holdings of government bonds, firm equity and borrowing from households. S

is an aggregate state vector. Nonlinearities in the model come from the following constraints

of the bank: ∑
j={B,K}

Qj(S)aj ≤ n+
b′

R(S)

n′ =
∑

j={B,K}

Rj(S’,S)Qj(S)aj − b′

The first constraint says that bank assets cannot exceed bank liabilities. The second one

describes the law of motion for the net worth, which depends on the payoff on banks assets

at the net of households payoff. In this model government can default according to a reduced

form default process dt with time varying probability pd(S):

d′ =

1 if ε′d −Ψ(S; θ2)

0 otherwise,

So that:

pd(S) ≡ Prob(d′ = 1|S) =
exp(Ψ(S; θ2))

1 + exp(Ψ(S; θ2))
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Government default triggers decline in the bank’s next period net worth and, depending on

banks holdings of government debt, this can drastically reduce the bank’s ability to finance

firms. The model is written to study the effects of both default and its time varying proba-

bility - the default risk. For this purpose it needs to be solved using global methods. Further

complications arise from the fact that the aggregate state vector S is seven dimensional.

In a more recent work Bocola and Lorenzoni (2017) present an open economy model with

financial intermediation. Government has a choice to issue bonds denominated either in

home or in foreign currency and banks borrow in both kinds of bonds against their capital.

Authors show that in the constrained region bank’s demand for capital can become upward

sloping and this could immediately move the economy into a new equilibrium.

Another possible application is a model by Bianchi (2016), used to study the effects of gov-

ernment interventions in the credit market. The main non linearity comes from the firms

credit and equity constraints:

bt+1

R
+ θF (z, k, h) ≤ κtkt+1

d ≥ d̄

where κt is a stochastic shock on the credit constraint. In the stochastic steady state

these constraints bind with positive probability, which is increasing in the amount of debt

held by the firms. These occasionally binding constraints create kinks in the policy function

and lead to a different behavior of the economy depending on where it is in the state space.

We expect that models with financial intermediation and occasionally binding constraints

should become even richer in terms of their dynamics as well as in the number of state

variables. For instance, while the seminal paper by Arellano (2008) had two state variables,

recent models of government default have 7 (Bocola, 2016). We believe that machine learning

techniques are well suited to capture such nonlinearities globally.

4.2 Asset pricing and learning

Klaus et al. (2017) incorporate price subjective belief into a standard asset pricing model.

Agents behave optimally given their imperfect knowledge of the price dynamics. The authors

show that this feature of the model leads to two desirable facts: the model can replicate the
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volatility of the stock prices observed in the data and the subjective capital gain expectations

are positively correlated with price-dividend ratio and with expected returns.

The investment problem is the following:

max
{Cit≥0,Sit}∞t=0

EPi0

∞∑
t=0

δtu(Ci
t)

SitPt + Ci
t = Sit−1(Pt +Dt) +Wt

where Ci denotes consumption, u corresponds to the investor’s utility, Si is investor’s

stock holdings (bounded by an upper and a lower limits), and P > 0 is the (ex-dividend)

price of the stock. P i denotes the agents subjective probability measure, which may or may

not satisfy the rational expectations hypothesis.

Exogenous processes for dividend Dt and wage Wt are given by:(
1 +

Wt

Dt

)
= (1 + ρ)1−p

(
1 +

Wt−1

Dt−1

)p
ln εWt

Dt = βDDt−1ε
D
t

Agents perceive prices evolving as:

lnPt+1 − lnPt = ln βt+1 + ln εt+1

where ε and β denote a transitory and persistent (ln βt+1 = ln βt+νt) shocks respectively.

The innovations εt and νt are assumed to be i.i.d. and normally distributed, the investors

learn from observed prices through an optimal Bayesian filter.

The solution to this problem, agents stock demand, takes the form:

Sit = Si
(
Sit−1,

Pt
Dt

,
Wt

Dt

,mi
t

)
where mi

t is a sufficient statistic characterizing the subjective distributions about future

relevant ratios. Finding this solution is computationally expensive, cause it requires to iterate

on the FOC of the problem:

u′(Ci
t) = δEPit

[
u′(Ci

t+1)
Pt+1 +Dt+1

Pt

]
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under the subjectively perceived dividend, wage and price dynamics, where agents un-

derstand that their beliefs evolve according to their learning process. In the paper this is

done using time iteration, see Aruoba et al. (2006) and Rendahl (2013), in combination with

the method of endogenous grid points, see Carroll (2006). Expectations are approximated

via Hermite Gaussian quadrature using three interpolation nodes for the exogenous inno-

vations. The consumption/stockholding policy is approximated by piece-wise linear splines,

which preserves the non-linearities arising in particular in the PD dimension of the state

space. Maximum (relative) Euler errors achieved in the paper are on the order of 10−3. The

approximation method presented in this paper allows to perform precise approximation of

the relevant policy functions, or expectation terms, even when they present a high degree

of non linearity. We suggest our technique might lead to accurate solutions with only few

neurons. Few neurons already provide a fully non parametric approach and allows to avoid

the need for the spline piece-wise approximation15 and, at the same time, a fast training

phase.

Efficient and precise algorithms, in this context, are relevant since, as suggested by the

authors, this setup is relatively simple and further complications of this model might be

required to explore interesting questions. For example, as mentioned in the paper, in this

basic setup price fluctuations do not adversely impact welfare. Authors suggest extensions

such as heterogeneous investors and endogenous output which might allow to study the effects

of stock price fluctuations on welfare and, therefore, questions relative to policy intervention

in asset pricing.

5 Conclusion

In this paper we show how an artificial neural network can be applied efficiently to solve

macroeconomics and asset pricing models. We present an interesting application in optimal

fiscal policy where, due to market incompleteness, the state space increases rapidly in the

number of financial instruments involved. The application of a neural network in this context

not only results in a much faster solution but also proves to be more scalable, allowing to

15which still follows a parametric approach
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study optimal policy with multiple maturities more easily. We also present an extension of

the model equipped with Epstein-Zin preferences that allows to better match bond price data.

In particular, we believe that an important extension is to introduce inflation and jointly

calibrate the model with both nominal and real bonds data. Single-layer neural networks

with a small number of neurons (as the one adopted in this paper) present efficient learning

performance and, at the same time, demonstrate themselves to be capable to handle a

large set of multicollinear variables. Moreover, their non-parametric nature does not require

commitment to a prespecified functional form, which is particularly relevant in problems

where the non linear features of the policy functions are crucial: asset pricing where investors

have subjective beliefs and models where government can default. Although there is no

theory of asymptotic behavior for this methodology, the method arrives at the same solution

as the standard Condensed PEA technique, but in a lesser time and comparable precision.
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Figure 6: Solution to the 1 bond case with maturity N = 10, g is an exogenous AR(1)

process
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Figure 7: Neural network predictions of the expected value terms (VS realized sequences) to

the 1 bond case with maturity N = 10, g is an exogenous AR(1) process
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Figure 8: Solution to the 3 bonds case. g is an exogenous process generated as an AR(1).

Taxes and bonds holdings are highly volatile, to make the graphs readable a 50-periods

simple moving average has been applied. In the long-run taxes decrease as more government

accumulates assets.

Appendix B

Model with Epstein Zin preferences
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Household Preferences:

Vt = [(1− β)U(ct, lt)
1−ρ + β(EtV 1−γ

t+1 )
1−ρ
1−γ ]

1
1−ρ

where lt = 1− ht. Budget constraint (BC):

ct + qtbt+1 = bt + (1− τt)ht

Defining Wt = bt and Rt+1 = Wt+1/qtbt+1 = 1/qt:

ct + qtWt+1 = Wt + (1− τt)ht

=⇒ Wt+1 = Rt+1(Wt − ct + (1− τt)ht)

The HH problem can be rewritten as:

Vt(Wt) = max
ct,ht

[(1− β)U(ct, 1− ht)1−ρ + β(EtVt+1(Wt+1)
1−γ)

1−ρ
1−γ ]

1
1−ρ

Wt+1 = Rt+1(Wt − ct + (1− τt)ht)

CE is Rt(Vt+1) = (EtV 1−γ
t+1 )

1
1−γ .

Optimal consumption (FOCc):

V ρ
t

(
(1− β)(1− ρ)U−ρt Uc,t − β(1− ρ)(EtV 1−γ

t+1 )
γ−ρ
1−γ (EtV −γt+1Rt+1VW,t+1

)
= 0

=⇒ (1− β)U−ρt Uc,t = βRγ−ρ
t EtV −γt+1Rt+1VW,t+1

Optimal labor supply (FOCh):

V ρ
t

(
−(1− β)(1− ρ)U−ρt Ul,t + β(1− ρ)(EtV 1−γ

t+1 )
γ−ρ
1−γ (EtV −γt+1(1− τt)Rt+1VW,t+1

)
= 0

=⇒ (1− β)U−ρt Ul,t = (1− τt)βRγ−ρ
t EtV −γt+1Rt+1VW,t+1

Envelope condition:

VW,t = V ρ
t βR

γ−ρ
t EtV −γt+1Rt+1VW,t+1

Combine FOCc with FOCh to get:

Ul,t
Uc,t

= 1− τt
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Combine FOCc with the envelope condition to get:

VW,t = V ρ
t (1− β)U−ρt Uc,t =⇒ VW,t+1 = V ρ

t+1(1− β)U−ρt+1Uc,t+1

Plugging back into FOCc:

(1− β)U−ρt Uc,t = βRγ−ρ
t EtV −γt+1Rt+1V

ρ
t+1(1− β)U−ρt+1Uc,t+1

Rearranging and simplifying leads to the following inter-temporal Euler equation:

1 = βEtMt(Vt+1)

(
Ut+1

Ut

)−ρ
Uc,t+1

Uc,t
Rt+1

where Mt(Vt+1) =
(

Vt+1

Rt(Vt+1)

)ρ−γ
.

We can find the the bond’s price pt as the expected value of the SDF:

qt = βEtMt(Vt+1)

(
Ut+1

Ut

)−ρ
Uc,t+1

Uc,t

FOCVt

βt−i
N∑
i=1

π(gt−i|g0)βiµt−iπ(gt|gt−i)bit−i+1Uc,tU
−ρ
t

∂Mt−i(Vt)

∂Vt(gt)
−

βt−i+1

N∑
i=1

π(gt−i+1|g0)βi−1µt−i+1π(gt|gt−i+1)bit−i+1Uc,tU
−ρ
t

∂Mt−i+1(Vt)

∂Vt(gt)
−

λVt β
tπ(gt|g0) + βt−1π(gt−1|g0)λVt−1βV

ρ
t−1Rt−1(Vt)

−ρMt−1(Vt)
−γ
ρ−γ π(gt|gt−1) = 0

1. ∂Vt/∂ct+j.

If j < 0:

∂Vt/∂ct+j = 0

If j = 0:

∂Vt
∂ct

= (1− β)V ρ
t U
−ρ
t

∂Ut
∂ct
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If j = 1:

∂Vt
∂ct+1(gt+1)

= V ρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V −γt+1

∂Vt+1

∂ct+1(gt+1)

= V ρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V −γt+1

(
(1− β)V ρ

t+1U
−ρ
t+1

∂Ut+1

∂ct+1(gt+1)

)
= V ρ

t β(1− β)Mt(Vt+1)π(gt+1|gt)U−ρt+1

∂Ut+1

∂ct+1(gt+1)

If j = 2:

∂Vt
∂ct+2(gt+2)

= V ρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V −γt+1

∂Vt+1

∂ct+2

= V ρ
t βRt(Vt+1)

γ−ρπ(gt+1|gt)V −γt+1

(
V ρ
t+1β(1− β)Rt+1(Vt+2)

γ−ρπ(gt+2|gt+1)V ρ−γ
t+2 U

−ρ
t+2

∂Ut+2

∂ct+2

)
= V ρ

t β
2(1− β)

2∏
k=1

Mt+k−1(Vt+k)
2∏

k=1

π(gt+k|gt+k−1)U−ρt+2

∂Ut+2

∂ct+2(gt+2)

For a generic j ≥ 0:

∂Vt
∂ct+j(gt+j)

= V ρ
t β

j(1− β)Xt,t+jπ(gt+j|gt)U−ρt+j
∂Ut+j

∂ct+j(gt+j)

2. ∂Mt−1(Vt)
∂Vt

∂Mt−1(Vt)

∂Vt
=(ρ− γ)

Mt−1(Vt)
ρ−γ−1
ρ−γ

Rt−1(Vt)2

Rt−1(Vt)− VtMt−1(Vt)
−γ
ρ−γ π(gt|gt−1)︸ ︷︷ ︸

∂Rt−1(Vt)

∂Vt


= (ρ− γ)

Mt−1(Vt)
ρ−γ−1
ρ−γ(

Vt

Mt−1(Vt)
1

ρ−γ

)2

[
Rt−1(Vt)− VtMt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]

= (ρ− γ)
Mt−1(Vt)

ρ−γ+1
ρ−γ

V 2
t

[
Mt−1(Vt)

−1
ρ−γ Vt − VtMt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]
=

= (ρ− γ)
Mt−1(Vt)

ρ−γ+1
ρ−γ

Vt

[
Mt−1(Vt)

−1
ρ−γ −Mt−1(Vt)

−γ
ρ−γ π(gt|gt−1)

]
=

= (ρ− γ)
Mt−1(Vt)

Vt

[
1−Mt−1(Vt)

1−γ
ρ−γ π(gt|gt−1)

]
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Appendix C

Solution algorithm for the model with Epstein - Zin preferences:

At every instant t the information set is It = {gt, {{bit−k}N−1k=0 }Ni=1, {µt−k}Nk=1, {λVt−k}Nk=1}.

Consider projections of Rt−i(Vt), EtMt(Vt+i)U
−ρ
t+iUc,t+i, Etµt+iMt+1(Vt+i)U

−ρ
t+iUc,t+i and

EtMt(Vt+i−1)U
−ρ
t+i−1Uc,t+i−1 onto It. We model these relationships using one single-layer

artificial neural network ANN (It). For example, with two bonds16 we would have 4N + 1

inputs and 8 outputs. In particular, use the following notations for each output:

ANN i
1 = Rt−i(Vt) for i = {1, N − 1, N}

ANN i
2 = EtMt(Vt+i)U

−ρ
t+iUc,t+i for i = {1, N}

ANN i
3 = Etµt+iMt+1(Vt+i)U

−ρ
t+iUc,t+i for i = {1, N}

ANN i
4 = EtMt(Vt+i−1)U

−ρ
t+i−1Uc,t+i−1 for i = {N}

Given starting values µt−1 = λV−1 = 0 and initial weights for ANN , simulate a sequence

of {ct}, {λVt }, {µt} as follow:

1. Use forward-states on the following i equations:

∀i : µt =
ANN i

3(It)
ANN i

2(It)

2. Find λVt , ct and {bit+1} that solve the following system of equations:

i. λVt =
N∑
i=1

(
µt−i

∂Mt−i(Vt)

∂Vt(gt)
− µt−i+1

∂Mt−i+1(Vt)

∂Vt(gt)

)
bit−i+1Uc,tU

−ρ
t + λVt−1

(
Vt−1
Vt

)ρ(
Vt

ANN 1
1

)ρ−γ
ii. V ρ

0 (1− β)X0,tU
−ρ
t

∂Ut
∂ct(gt)

+ µt

(
∂U−ρt Uc,t
∂ct(gt)

st +
∂st
∂ct

U−ρt Uc,t

)
+

∂U−ρt Uc,t
∂ct(gt)

N∑
i=1

(
µt−i

(
Vt

ANN i
1

)ρ−γ
− µt−i+1

(
Vt

ANN i−1
1

)ρ−γ)
bit−i+1 + λVt V

−ρ
t (1− β)U−ρt

∂Ut
ct(gt)

= 0

iii.
N∑
i=1

βi−1bitANN i
4 = stU

−ρ
c Uc,t +

N∑
i=1

βibit+1ANN i
2

16One with maturity 1 and the other with maturity N
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Where:

∂Mt−i(Vt)

∂Vt
= (ρ− γ)

(
Vt

ANN i1

)ρ−γ
Vt

[
1−

(
Vt

ANN i
1

)1−γ

fgt(gt|gt−i)

]
Vt = [(1− β)U(ct, 1− ct − gt)1−ρ + βANN 1

1(It+1)
1−ρ]

1
1−ρ

and

∂Ut
∂ct

= Uc,t − Ul,t

fgt(gt|gt−1) is the conditional probability density of the exogenous g process.

3. Use the simulated sequence to train theANN and re-start from point 1 till convergence

of the predicted sequence over the realized one.

Appendix D

Parameter Value

Total endowment in a period A = 1

Discount factor β = 0.96

RRA γ = 1.5

1/EIS ρ = 1.6

Leisure utility parameter η = 1.8

AR(1) parameter in gt φ1 = 0.8

constant in AR(1) process of in gt c = 0.04

Variance of the disturbances to gt σ2
ε = 0.00001

Borrowing limits
M̄N = 0.5 ,M̄S = 0.5

MN = 0.5 , MS = 0.5

Table 6: Parameter Values used in both models one and two bond models
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