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Abstract

Information theory provides ideas for conceptualising information and measuring relationships
between objects. It has found wide application in the sciences, but economics and finance have
made surprisingly little use of it. We show that time series data can usefully be studied as
information – by noting the relationship between statistical redundancy and dependence, we are
able to use the results of information theory to construct a test for joint dependence of random
variables. The test is based on the entropy rate of a stochastic process, which allows it to measure
dependence among sets of random variables, as opposed to the existing econometric literature that
uses entropy and finds itself restricted to pairwise tests of dependence. The test is parameter-free,
unlike ‘non-parametric’ tests that require parameters for density estimation. Most remarkably, it
can be generalised to identify dependence between any objects with a computer representation.
We show how serial dependence may be detected in S&P500 and PSI20 stock returns over different
sample periods and frequencies. We apply the test to synthetic data to judge its ability to recover
known temporal dependence structures.

Keywords: Information theory, entropy, data compression, independence test, source code

1 Introduction
We apply some concepts from information theory to the study of time series economic phenomena.
Asset pricing and statistical models of stock returns try to capture the salient features of the latent
processes that generate our observed data. Information theory, following Shannon (1948), provides
ideas for conceptualising information and measuring relationships between collections of objects that
are highly relevant for describing the behaviour of economic time series. In finance, a time series of
stock returns is a collection of real numbers that are ordered in time. The real numbers have a natural
ordering1, and using ideas from information theory to study the relationship between this ordering of
returns and the time ordering of returns brings out salient features of the latent generating processes
to be modelled.

In particular, we may ask whether there are information redundancies over time in price changes
in general and stock returns in particular. Hayek (1945) argued that prices in an economy are a
mechanism for communicating information that helps people to organise their behaviour, so the infor-
mativeness or uninformativeness of prices has important implications for the function or dysfunction
of a capitalist system. The efficient market hypothesis (EMH) of Fama (1965) argues that asset prices
∗Corresponding author. Email pedro.vitoria@maths.ox.ac.uk.
†This author gratefully acknowledges the support of FCT doctoral grant SFRH / BD / 68331 / 2010.
1All the real numbers are ordered by the relation ≤.
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reflect all available information. Since asset prices are merely summary measures of an enormous
variety of market conditions, and since acting on information incurs costs to economic agents, asset
prices could not possibly reflect all information, so the hypothesis is usually interpreted in terms of a
normative pricing model. The EMH is an important stylisation for constructing models of macroeco-
nomic phenomena, for making investment decisions and for assessing risk, and it has therefore been
extensively tested against data. However, the EMH has proved challenging to test for at least two
reasons. First, because we are faced with uncertainty about the distribution of information among
economic agents and the costs they face in acting on this information. Secondly, since the hypothesis is
interpreted in terms of a normative pricing model, evidence of a contradiction may be evidence against
the pricing model only.

Models of asset prices are often required to show a so-called martingale property, which roughly
states that betting on prices should be a fair game. Ever since Bachelier proposed a random walk model
for stock prices, researchers have been interested in characterising the intertemporal dependence of the
process generating returns. The independent increments property of the random walk model is known
to be inconsistent with many stylised facts about stock returns: mean reversion and momentum effects,
predictability of returns at daily and weekly frequencies, volatility clustering2 and higher volatility
during U.S. market opening hours (Fama, 1991). Fama (1991) argues that predictable patterns in
volatility of stock price changes are not evidence against the EMH because such predictability may
be perfectly ‘rational’. General statistical dependence in the process generating stock returns is not
evidence against the EMH, even though it implies that past returns can be informative about the
behaviour of future returns, because there is no necessary equilibrating mechanism by which stock
prices today should adjust to make our beliefs about the pattern of future returns, which are conditional
on past returns, consistent with some unconditional beliefs. For example, if today’s stock prices reflect
information about next year’s stock return volatility, this does not necessarily imply the existence
of arbitrage. Even though statistical dependence in the process generating stock returns does not
contradict the EMH, it has profound implications for the proper specification of models to describe
this process.

The ideas of information redundancy and statistical dependence are strongly related, because redun-
dant information in a sample of stock returns, for example, provides evidence for statistical dependence
in the latent model that generates those returns. This is the key observation of our paper. Apart from
being able to find substantial information redundancy in stock returns at various frequencies and in
multiple stock markets, we are able to exploit this relationship between redundancy and dependence,
which the econometrics literature has so far ignored to the best of our knowledge. Specifically we are
able to offer a statistical measure of and test for dependence. This test for dependence can be applied
to discover relationships in the most general sense between different random structures – even in the
presence of sampling variation – and in particular can be applied to discover intertemporal dependence
in stock returns. In the category of tests for dependence between real-valued random variables, in-
cluding tests of serial dependence, our test has some distinct advantages over other existing methods.
In general, our test can be used to discover statistical dependence in any random structures that can
be represented in a computer, including text, pictures, audio and video.

Historically, measuring dependence in real-valued random variables often amounted to measuring
correlation between pairs of them. However, correlation is a measure of linear association, which is
only a specific type of dependence. For example, if we consider a zero-mean symmetrically distributed
random variable X, then X and X2 have zero correlation with each other even though they are
completely dependent.3 Over and above this problem that occurs with a pair of variables, correlation
is unable to summarise the degree of dependence between more than two variables in a single number.

2In the finance literature, the term volatility is used quite specifically to mean the statistical measure standard
deviation, rather than other types of variability. Volatility clustering refers to the observation that the standard deviation
of changes in asset prices is often high for several consecutive periods, followed by several consecutive periods of low
volatility.

3X and X2 have zero correlation because the covariance between them is Cov(X,X2) = EX3 = 0. X and X2 are
not independent because σ(X) ∩ σ(X2) = σ(X) 6= ∅.
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Correlation is therefore not a sufficient or adequate measure of dependence. Many other measures of
dependence with desirable properties are available in econometrics, including those based on entropy,
mutual information, correlation integrals, empirical distribution functions and empirical characteristic
functions. Our measure and test is most closely related to non-parametric entropy-based dependence
measures of Robinson (1991), Skaug and Tjostheim (1996), Granger and Lin (1994) and Hong and
White (2004). These tests measure the degree of dependence between pairs of random variables by
estimating a non-parametric (kernel) joint density function, computing its entropy, and comparing this
with the entropy of such a density under independence. A large difference provides evidence against
the independence of these two random variables, and an asymptotic distribution theory allows one to
determine if the difference is larger than one might expect as a result of sampling variation. Attractive
features of entropy-based tests are that they can identify non-linear dependence (unlike correlation)
and they are robust to monotonic transformations of the random variables. The main disadvantages
of the existing entropy-based tests cited above are:

1. They have to be computed for pairs of random variables or pairs of lags in a time series, so they
cannot measure or be used to test for joint dependence between sets of random variables. For
example, they cannot test whether lags 1 to 10 of a time series contain enough of the intertemporal
dependence that we may ignore other lags when specifying a model.

2. They can be sensitive to the choice of bandwidth parameter and kernel function made in density
estimation. This problem is exacerbated by the fact that we need to estimate a joint distribution,
rather than just a single distribution.

Our measure of and test for dependence overcomes both these problems, while preserving the advan-
tages of an entropy measure. It is a powerful method that can test for intertemporal and cross-sectional
dependence in groups of time series. In fact, the full generality of the method is remarkable.

In the remainder of this introduction, we introduce the reader to the relevant ideas in information
theory and data compression that motivate our test, and we describe the stock return data that will
be used illustratively throughout. In Section 2.1, we offer a plotting procedure for visualising the
degree of intertemporal structure in a single time series. In Sections 2.2 and 2.3, we apply our test of
dependence to identify serial dependence in several stock return series and known stochastic processes.
Section 3 concludes.

1.1 Information and data compression
We can think of the information contained in a set A as everything in A that is not redundant
in some sense. Compression can be achieved by finding redundancies and removing them. Data
compression is the process of finding small representations of large quantities of data, where the size
of the representation is usually measured in bits. Compression can be lossless, in which case the
small representation is exactly equivalent to the large representation, or lossy, in which case the small
representation can be made even smaller by also removing some of the most infrequently occurring
data atoms. In this paper we only need to consider lossless compression.

Consider the ordered sequence of real-valued random variables {Xt : t ≥ 0} that we call the data
generating process and suppose we have sampled finitely many realisations of this process {xti} =
{xt1 , xt2 , xt3 , . . . , xtn} for 0 ≤ t1 < t2 < . . . < tn.4 In order to represent real numbers in a computer,
we need some discretisation of the real line which defines the maximum and minimum observable real
numbers and the precision of the machine. In practice, we have some discretion over this discretisation
even if we are unaware of it, and finer or wider partitions can be used when the application requires it.
The fineness of the partition is called the resolution of our machine, and this resolution will be relevant
to our proposed test for independence. We can therefore think of the sample space of this stochastic
process as being discrete. A code for this stochastic process is a bijection from the discretised real
line to the set of finite sequences of bits. Given a code, the original sequence of symbols {xti} can be

4We suppose that we have a filtered probability space on which this random process is defined.
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encoded into a sequence of bits, which we call its bit representation. The precise objective of lossless
compression is to find codes with the shortest possible encoded sequences in the long run.

Example 1 Consider a stochastic process {Xn} consisting of a collection of iid random variables with
distribution P such that

P(X = a) =
1

2
, P(X = b) =

1

4
, P(X = c) = P(X = d) =

1

8
.

In this case, one code achieving the best possible compression rate is given by

a→ 0, b→ 10, c→ 110, d→ 111.

The average length of an optimally encoded sequence is, in the long run, 1.75 bits/symbol. Note that
this average length coincides with the entropy rate of the stochastic process, to be defined below.

Possibly the most important quantity in information theory is the statistic known as entropy. For
a discrete random variable X1 with probability mass function {p1, p2, . . . , pN}, the entropy is defined
as5

H(X1) = −
N∑
i=1

pi log(pi),

and for the unordered collection of random variables X1, . . . , Xn we can compute the entropy of the
joint random variable (X1, ..., Xn), denoted H(X1, ..., Xn). The entropy enjoys several remarkable
properties. One of these is that

H(X1, ..., Xn) ≤ H(X1) + ...+H(Xn),

with equality if and only if the random variables X1, ..., Xn are independent. For an overview of the
remaining properties of entropy we refer the reader to Cover and Thomas (2006).

Given a stochastic process {Xn}, we can consider the entropy of its first n random variables and
study how fast this quantity grows. This leads to the definition of the entropy rate of the stochastic
process {Xn},

h({Xn}) = lim
n

H(X1, ..., Xn)

n
.

whenever such a limit exists. It can be proven that for any stationary process the entropy rate is
well defined, see for instance (Cover and Thomas, 2006). This entropy rate will form our measure of
dependence and our test statistic. Note that for a stationary process we have the inequality

h({Xn}) ≤ H(X1),

or, in other words,
h({Xn}) = αH(X1),

for some α ∈ [0, 1]. In other words, the entropy rate of a stationary process can be decomposed in
two components: the entropy of its marginal distribution, H(X1), and a discount factor reflecting the
intertemporal structure of the process, α. In this work, we propose to study the intertemporal structure
of returns by analising its entropy rate. For that purpose, we will need to control the contribution
of the entropy of the marginal distribution to the entropy rate - we achieve this by a discretisation
procedure described in detail in Section 2.1.

In the next two examples we contrast the behaviour of the entropy rate under independence and
dependence. The examples use restrictive assumptions to keep the exposition as simple as possible.

5The logarithm is taken in basis 2, as is is usual in Information Theory. The same basis is used throughout the entire
document even though it is omitted.
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Example 2 Consider a stochastic process consisting of iid random variables, {Xn}. Then, its entropy
rate is

h({Xn}) = lim
n

H(X1, ..., Xn)

n

= lim
n

∑n
i=1H(Xi)

n

= H(X1).

That is, in the case of an iid sequence of random variables, the entropy rate od the stochastic process
coincides with the entropy rate of its marginal distribution.

Example 3 Consider a discrete one-step Markov chain with transition matrix (Pxixj ) for all i, j and
stationary distribution µ = (µ1, ..., µN ). Let {Xn} be the stochastic process obtained when we start this
Markov chain from its stationary distribution. Then

P(X1 = x1, ..., Xn = xn) = µx1
Px1x2

...Pxn−1xn ,

and

1

n
H(X1, ..., Xn) = − 1

n

∑
(x1,...,xn)

µx1
Px1x2

...Pxn−1xn log(µx1
Px1x2

...Pxn−1xn)

=
H(µ)

n
+

(n− 1)

n

∑
(x1,x2)

µx1
Px1x2

log(Px1x2
)

n→
∞

N∑
x1=1

µx1
H(X2|X1 = x1),

where H(µ) is the entropy of the stationary distribution. In other words, the entropy rate of a stationary
one-step Markov chain is the average of the entropies of its N conditional one-step random variables
with weights given by the stationary distribution. In particular, the entropy rate of the stochastic
process does not coincide with the entropy rate of its marginal distribution, it is strictly smaller.6.

Intuitively, the entropy rate of a stochastic process is the rate at which the number of ‘typical’
sequences grows with the length of the sequences. In other words, the number of typical sequences of
length n for a given stochastic process {Xn} is approximately

2nh({Xn}),

for n sufficiently large. It is essentially because of this interpretation that, as we shall see, the entropy
rate gives a sharp upper bound to the maximum lossless compression ratio of messages generated by a
stochastic process. The Fundamental Theorem for a Noiseless Channel due to Shannon (1948), states
that for any stationary ergodic stochastic process {Xn} and for any ε, there exists a code with average
length smaller than h({Xn})+ε bits/symbol. Furthermore, there does not exist any code with average
length smaller than h({Xn}) bits/symbol.

Given a stochastic process {Xn}, if one has access to the joint distribution of (X1, ..., Xn), for n
sufficiently large, then it is possible, at least in principle, to design codes that are efficient for data
generated by such a process. However, in practice there are many situations in which one does not know
beforehand the distribution of the data generating process. Furthermore, even in the limited number
of cases in which one does know the distribution of the data generating process, it might be unfeasible
to compute the joint distribution of (X1, ..., Xn) for n large, and/or find the ‘typical’ sequences for
such a distribution. Therefore, it is natural to ask whether there are universal procedures that will

6In this case the entropy of the marginal distribution is H(µ).
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effectively compress any data generated by a sufficiently regular process. Our day-to-day experience
with computers and celebrated tools such as zip, tells us that the answer to this question should be
positive. And it is, indeed, as we shall see in the following.

There is a popular class of compression algorithms that is universally optimal and easy to im-
plement. These are termed Lempel-Ziv, after the authors of the two basic algorithms that underlie
this class, the LZ77 and LZ78. The LZ77 compression algorithm was introduced by Ziv and Lempel
(1977). One year later the same authors published the LZ78 algorithm in Ziv and Lempel (1978).
Loosely speaking, the Lempel-Ziv algorithms encode each sequence as a pointer7 to the last time that
sequence occurred in the data8. Because typical sequences appear more often, the pointers to the
last time they occur are smaller than those for atypical sequences. One remarkable feature of these
algorithms, proved by Wyner and Ziv (1991; 1994), is that they are asymptotically optimal. More
precisely, given a stationary and ergodic stochastic process {Xn}, and denoting by l(X1, ..., Xn) the
Lempel-Ziv codeword length associated with (X1, ..., Xn),

lim sup
n

l(X1, ..., Xn)

n
≤ h({Xn}), a.s.. (1)

Since 1977, improved implementations of Lempel-Ziv algorithms have been developed. We use one
of the most recent ones, the Lempel-Ziv-Markov Algorithm (LZMA), which has been in development
since 1998 and is featured in the widely available .7z compression format. Combining equation 1 with
the Fundamental Theorem for a Noiseless Channel above, we can see that the average codeword length

l(X1, ..., Xn)

n

is a consistent estimator for h({Xn}) when the stochastic process {Xn} is stationary and ergodic.
Given a computer file containing an encoding of a random sample from the stochastic process {Xn},
a proxy for h({Xn}) is its compression ratio defined as

1− number of bits in the compressed file

number of bits in the uncompressed file
.

More precisely, on the one hand, the compression ratio is an estimator of the optimal compression
ratio. On the other hand, the optimal compression ratio, ρ({Xn}), is related to the entropy rate via
the formula

ρ({Xn}) = 1− h({Xn})
log(N)

,

where N is the number of possible values that the process takes. In the sequel, we will always quote
compression ratios, instead of entropy rates. The reader should recall the above formula to convert
between the two9.

Unfortunately, to the best of our knowledge, there is currently no general result for the rate of
convergence of the Lempel-Ziv algorithms to the entropy rate. To overcome this difficulty, we introduce
extra randomness in the data by randomly reshuffling blocks of data10. By comparing the compression
rates obtained with and without the extra randomness we are able to perform inference on the entropy
rate of the data-generating process. This procedure motivates the statistical test for dependence that
we describe in Section 2.4.

7In computer science, a pointer is an address to a location in the computer’s memory. It is an object, whose content
is the address of another object in the memory of a computer.

8More precisely, the algorithm stores new sequences in a dictionary as they appear. This is why these algorithms are
also described as adaptive dictionary compression algorithms.

9Throughout this document we only compute the compression ratio of stochastic processes taking exactly 256 values.
In this case, we have log(256) = 8.

10By reshuffling we mean resampling without replacement.
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1.2 Bias in the compression rate estimator
The skeptical reader might be wondering how ‘optimal’ these algorithms are, that is, how fast they
approach optimality. We end this section with a simple experiment that ought to ‘reassure’ us that
the algorithm does indeed work well. Furthermore, as we sill see, this experiment teaches us that one
more factor needs to be considered before we proceed with more serious matters.

Example 4 (Convergence of the LZMA and overhead costs) We start this example by gener-
ating a probability mass function with support in exactly 256 points, that is a vector p = (p1, ..., p256)
such that

∑
pi = 1. This vector of probabilities is generated randomly, but with the property that

the first 128 probabilities are on average smaller than the last ones11. The entropy of the resulting
distribution is readily computed as 7.484616.

The next step in this experiment is to generate N i.i.d. samples in 0, ..., 255 according to the proba-
bility mass p. Note that each sample can be perfectly represented using 1 byte. Shannon’s fundamental
theorem tells us, if N is sufficiently large, then it should be possible to represent these N samples using
only 7.485 bits, or 0.936 bytes per sample. In other words, for N sufficiently large, there exist codes
that achieve a compression ratio of approximately 0.064.

To test how the LZMA algorithm performs on this compression task we write all the N samples in
a binary file and compress it. Note that the size of the uncompressed file is exactly N kilobytes. The
result of the compression is on the following table:

N compressed size (CS) compression ratio (CR)
1 100 222 -1.220000
2 500 621 -0.242000
3 1000 1109 -0.109000
4 5000 5003 -0.000600
5 10000 9874 0.012600
6 50000 48086 0.038280
7 100000 95598 0.044020
8 500000 475432 0.049136
9 1000000 950139 0.049861
10 5000000 4747766 0.050447
11 10000000 9495234 0.050477

Table 1: Result of compressing data generated by a source with theoretical maximum compression
ratio of 0.064.

Examining the table above generates mixed feelings. The compression ratio increases with N , as
it should, but seems to staganate when it approaches 0.05 which is not too close from the theoretical
maximum. This leaves us wondering about where our extra compression power went, and helps us
realise that there is a factor that we are not taking into account. The missing factor is overhead costs,
that is, costs inherent to how the algorithm is actually implemented. These overhead costs can arise
for a number of reasons, for example:

• The compressed file must carry a header with some information, which is a fixed cost.

• The LZMA needs an initial dictionary to start compressing, which might be coded in the file at a
fixed cost.

Helpfully, we can estimate this overhead cost and remove it, without guessing about its origins. Con-
sider, for that purpose, a simple experiment analogous to the previous one. First, generate a sequence

11For the interested reader, we sampled 128 uniform random variables in [0, 1/3] and 128 uniform random variables in
[0, 1]. These 256 samples are then used to form the probability vector - after being normalized so as to sum to 1.
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of N independent and identically distributed random numbers uniformly distributed in {0, ..., 255}.
Then save the resulting sequence to a binary file and compress it using the LZMA algorithm as before.
We know that this sequence is incompressible, that is its entropy 8, the maximum possible. Therefore,
the resulting “compressed” file should have the overhead costs, but no actual compression. The results
of this second experiment can be found in Table 2.

N “compressed” size overhead overhead (%)
1 100 223 123 1.230000
2 500 631 131 0.262000
3 1000 1135 135 0.135000
4 5000 5180 180 0.036000
5 10000 10242 242 0.024200
6 50000 50831 831 0.016620
7 100000 101488 1488 0.014880
8 500000 506982 6982 0.013964
9 1000000 1013758 13758 0.013758
10 5000000 5068105 68105 0.013621
11 10000000 10135980 135980 0.013598

Table 2: Result of compressing data generated by a source with theoretical maximum compression
ratio of 0.

As we can see from this table, the overhead costs decrease with the length of our sample N , but is
nevertheless non-negligible. These overhead costs bias our estimator of the optimal compression ration.
If one takes into account these bias, we can recast the results in Table 3.

N CS CS minus overhead ‘unbiased’ CR
1 100 222 99 0.010000
2 500 621 490 0.020000
3 1000 1109 974 0.026000
4 5000 5003 4823 0.035400
5 10000 9874 9632 0.036800
6 50000 48086 47255 0.054900
7 100000 95598 94110 0.058900
8 500000 475432 468450 0.063100
9 1000000 950139 936381 0.063619
10 5000000 4747766 4679661 0.064068
11 10000000 9495234 9359254 0.064075

Table 3: Result of compressing data generated by a source with theoretical maximum compression
ratio of 0.064 taking into account overhead costs.

Once the overhead costs are removed, we can see the compression ratio converging to the theoretical
maximum. In fact, for sequences of size 5e5 the compression ratio is already close to being optimal.
Most of the datasets we will use in the sequel are smaller than this. However, the dataset of S&P500
tick data is precisely of this size. Indeed, high frequency data seems to be a good target for these
techniques.

The previous example shows that our estimator of the optimal compression ratio has a bias due to
overhead costs. It also shows that it is possible to remove this bias by estimating the overhead costs
using an uncompressible source of data. In what follows, we will account for this bias and report only
bias-corrected estimates of the compression ratios.
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Table 4: Summary statistics for the return series data used in this paper.

start end medianFreq
SPdaily 1928-01-03 2013-02-28 1 days
SPdaily1 1928-01-03 1949-02-10 1 days
SPdaily2 1992-12-03 2013-02-28 1 days
SPmin 2012-08-24 2013-03-01 1 mins
SPtick 2012-08-24 2013-03-01 5 secs

PSI20daily 1993-01-04 2013-02-28 1 days
PSI20min 2012-08-24 2013-03-01 1 mins
PSI20tick 2012-08-24 2013-03-01 15 secs

0% 25% 50% 75% 100% mean std skew kurtosis
SPdaily -0.2290 -0.004728 0.0006116 0.005506 0.1537 0.00021137 0.0120193 -0.43 18.5
SPdaily1 -0.1386 -0.007055 0.0008227 0.007590 0.1537 -0.00003762 0.0172679 0.02 8.0
SPdaily2 -0.0947 -0.004894 0.0005637 0.005848 0.1096 0.00024832 0.0120808 -0.24 8.4
SPmin -0.0091 -0.000123 0.0000066 0.000124 0.0122 0.00000150 0.0003104 1.15 123.3
SPtick -0.0036 -0.000020 -0.0000065 0.000020 0.0065 0.00000014 0.0000622 1.65 487.2

PSI20daily -0.1038 -0.004769 0.0003603 0.005537 0.1020 0.00013639 0.0114057 -0.35 8.5
PSI20min -0.0191 -0.000183 0.0000038 0.000188 0.0122 0.00000290 0.0004063 -0.88 158.7
PSI20tick -0.0189 -0.000096 0.0000034 0.000099 0.0116 0.00000102 0.0002448 -1.92 363.5

1.3 The stock return data
The two stock indices used in this paper are the S&P500 and the headline index of the Portuguese
Stock Exchange, the PSI20. Various sample periods are used and sampling frequencies of day, minute
and tick are considered. We summarise the returns series over the various samples in Table 4. All data
were obtained from Bloomberg12.

2 Method and results
In this section, we describe our methodology and present our results. In Section 2.1, we describe
how an effective discretisation of the data is useful to detect its intertemporal statistical structure. In
Section 2.2, we describe how combining a bootstrapping method with compression algorithms can give
insight on the dependence of random variables. In the same section, we present our findings in the
returns data. In Section 2.3, we introduce the serial dependence function which measures the increase
in dependence obtained from considering bigger collections of consecutive time-series points. In Section
2.4, we summarise the methodology by formalising it a statistical test. Finally, in Section 2.5, we test
our methodology in synthetic data. Additionally, in the same section, we use this technique to measure
the goodness of fit of a GARCH(1,1) model to S&P500 daily returns.

2.1 Visualisation of temporal dependence in quantiles at high frequencies
Consider again the sample {xti} = {xt1 , xt2 , xt3 , . . . , xtn} for 0 ≤ t1 < t2 < . . . < tn defined in
Section 1.1. We want to study the ‘structure’ of this sample to make inferences about the data
generating process. The structure that we examine is the relationship between the longitudinal or
time series ordering of the sample to its ordering in terms of the ≤ relation on R. We could define the

12Tickers: “SPX Index” and “PSI20 Index”.
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(longitudinal) empirical cumulative distribution function13

F̂ (x) =
1

n

n∑
i=1

I{xti ≤ x}, (2)

and by applying the transformation x 7−→ nF̂ (x) to our sample, we would obtain the time-ordered
ranks of the values in our sample.14 These ranks are detailed in that they span the integers {1, 2, . . . , n},
and for the large samples that we consider, the detail prevents us from seeing patterns in our sample
that are present across time with the naked eye. Now suppose that we group the observations into
28 = 256 equally-sized ‘bins’ based on their rank, using the transformation x 7−→ b28F̂ (x)c, where b·c
is the usual floor function. Doing so would reduce the detail in the rank-ordering of our sample, which
can be seen as a decrease in resolution or a loss of information. We would obtain from our sample a
sequence of length n, taking values on the integers {1, 2, 3, . . . , 28}, and this sequence would describe
the time evolution of high and low values in our sample, where ‘high’ and ‘low’ are understood in terms
of the set {1, 2, 3, . . . , 28} rather than the set {1, 2, . . . , n}. To enable a visualisation, we have effectively
discretised the sample space R into 28 regions based on the quantiles {2−8i : i = 0, 1, 2, . . . , 28} of the
distribution function F̂ . The exact partition of R obtained via this method is the one obtained by
applying the inverse cumulative distribution function

F̂−1(q) := inf{x|F̂ (x) ≤ q}

to [0, 1]. Therefore, our discretisation will have more resolution in areas where the density corre-
sponding to F̂ is more peaked. We could use the terminology ‘states’ to refer to the indexing set
{1, 2, 3, . . . , 28} and we could plot these states against time to visualise local serial dependencies in
the value of our process. If the underlying data generating process were a sequence of independent
(but not necessarily identically distributed) random variables, we would expect a uniformly random
scatter of points across states and time. We say that this procedure performs a rank plot with 8 bits
of resolution.

We apply the above method to our samples of S&P500 returns at day, minute and tick frequencies
and plot the results in Figure 1. Note that each panel in Figure 1 shows only one time series, despite
the discernible horizontal lines. In this rank plot with 8 bits of resolution, we can interpret the returns
series as a discrete Markov chain of unknown lag order, transitioning at every point on the x-axis
to one of 28 possible states. From inspecting the figure, we can discern some time structure in the
returns, in the form of patterns in the black and white regions of the plot, with more structure at higher
frequencies. The daily returns show more time structure in the first half of the sample period than in
the second half. Near the beginning of the sample period, the observations are clustered in the top
and bottom states, which are the extremes of the (longitudinal) distribution of returns, and clustered
away from the median returns. The presence of horizontal patterns in the first half of the daily returns
sample period indicates some clustering of similar states or quantiles in small time intervals.

Smart algorithms for pattern detection, like data compression algorithms, can discover these pat-
terns and others hidden from the human eye. By representing the original data equivalently as combi-
nations of commonly-occuring patterns, these algorithms can distill a large data set into an equivalent
smaller data set, and the amount by which the size of the data set is reduced is a measure of the
redundancy in the original data set.

13If the stochastic process generating the data is stationary and ergodic then, by the ergodic theorem, the longitudinal
empirical cumulative distribution function converges to the marginal cumulative distribution function.

14For this exposition, note that we do not require that Xt
d
=Xt′ for t 6= t′, and we do not require that F̂ be a consistent

estimator of the distribution of Xt for some t.
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Figure 1: The time evolution of 256 quantiles of returns at daily, hourly and tick frequencies.
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2.2 Compression ratios and testing for serial dependence
Returns in a computer are most often represented as 32- or 64-bit numbers.15 We standardise the
amount of memory allocated to each return by representing each return using only 8 bits, which
effectively applies the transformation x 7−→ b28F̂ (x)c of the previous section to each return. Higher
resolutions of 32 and 64 bits are also possible, and would result in higher compression ratios, without
affecting the validity of the statistical test we would like to propose. We know that returns are not
likely to be any number that a machine can represent as a 64-bit number. For example, we know
the we will never observe a return of 260, even though by representing numbers as doubles, we are
effectively considering that possibility as well. Furthermore, the returns have a specific distribution
which over time is centered and concentrated around zero. Just by exploiting this fact we can get
a good compression ratio. However, this gain does not have to do with the intertemporal statistical
structure of the signal, which is precisely what we propose to study. Therefore, we transform the
returns in the above way so that all combinations of 8 bits appear equally often. These issues of the
resolution with which to represent numbers are implicitly present also in other econometric tests of
dependence.

After choosing the resolution, the various redundancies that a lossless compression algorithm can
detect are

1. Time series patterns – this is the temporal dependency that we would like to isolate from the
entropy rate estimator of the returns series.

2. Within-number patterns – these are inefficiencies in the machine representation of the numbers
themselves and would arise, for example, if we used a 64 bit number to represent a return with
mean close to zero and standard deviation � 1.

By applying our above transformation and 8-bit representation, we can eliminate much of the non-
temporal relationships in our data. In other words, we control the contribution of the marginal
distribution of returns to the entropy rate of the return process. Then, to study the intertemporal
component of the entropy rate we perform random shuffles of blocks of data. By varying the block size
used in the shuffling procedure, we can assess the contribution of the dependence within each block to
the overall entropy rate of the process. Note that in the extremes of this spectrum of shuffles are the
shuffles of blocks of size 1 - which shuffles all the data and destroys all the intertemporal structure -
and the shuffles of blocks of size n - which does not shuffle at all and therefore does not destroy any
intertemporal structure.

In Figure 2, we show the compression ratios achievable for the S&P500 and PSI returns series at
frequencies of day, minute and tick for. The y-axis plots the unbiased estimate of the compression
ratio of the underlying stochastic process computed for shuffles of blocks of varying length (ranging
from 1 to n, where n is the length of the time-series). In each panel, the estimate of the compression
ratio of the returns generating process is the vertical height at the rightmost point on the x-axis. A
higher compression ratio indicates more statistical redundancy in the returns series, which occurs at
higher frequencies and more so on the PSI than the S&P500.

By randomly shuffling the individual returns before compressing, we are able to destroy all statis-
tical structure/patterns in the time dimension, so that all remaining compression would come from
inefficiencies in the machine representation of the numbers, less the overhead cost. Note that our 8 bit
representation is very efficient so that the compressibility of the file is close to zero. The leftmost point
on the x-axis in each panel of Figure 2 gives our compression rate estimate of an independent and
identically uniform random variable, which has a mean of exactly zero and some (small) uncertainty
from sampling variation.16 The horizontal axis in each panel shows the block size used to perform the
random shuffling. For each block size we perform 1000 shuffles so as to be able to compute confidence

15If returns are stored as doubles, then they take 2 memory positions, which in a 32-bit computer corresponds to 64
bits. If they’re stored as floats then they take 1 memory position.

16The confidence intervals plotted in Figure 2 are approximations and are therefore sometimes negative. This is
explained in more detail in Footnote 18.
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(a) S&P500 Day
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Figure 2: Entropy rate estimators for original return series, and box-and-whisker plots summarising
the entropy rate estimators for shuffled return series at various block sizes. Consecutive returns are
resampled in blocks of the specified size (without replacement) and for each shuffled time series of
returns a compression rate estimate is calculated.
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intervals. Returns series that have been shuffled in block sizes of 1 seem to be effectively iid and achieve
a much lower compression than the original (unshuffled) returns series, which can be interpreted as
saying that there is more redundancy/less statistical information in the original returns. Equivalently,
the result can be interpreted as evidence for the informativeness of the time series dimension in re-
turns data. If returns were independent (but not necessarily identically distributed) across time, their
information content would not be affected by shuffling. By comparing the estimated compression ratio
for the original time-series and the distribution of estimated compression rates obtained from many
randomly shuffled returns, it is possible to conduct a statistical test of the independence assumption.17
In every panel, we see that the p-value of such a test would be zero, in the sense that the compression
ratio from the original returns series lies above the maximum compression ratio of the returns series
shuffled in blocks of size 1.

By increasing the block size, we destroy less time series structure in the original returns series, so
that more compression is, on average, achievable. Equivalently, by increasing the block size, we provide
more structured pseudo-return data to the compression algorithm, which tries to detect and exploit
any extra information. Even at block sizes of 10 consecutive returns, we note that the compression
ratio of the original return series lies above the maximum compression ratio of the shuffled return
series, which means that a significant proportion of the dependence that is detectable in the original
returns series is due to dependence at lags greater than 10.

As the block size grows, the compression rate estimate of the shuffled returns approaches the
compression ratio for the original returns series. For any given tolerance, there is a cutoff point defined
by a statistical test where the modeller is indifferent between models of lag larger than k - this lag
would be the one that captures, within the given tolerance, the intertemporal statistical structure of
the whole series. For the block sizes shown in Figure 2, we can only identify this cutoff for the daily
PSI returns. For a typical tolerance level in [0, 1/2), we expect the cutoff to be below lag 499, and
closer to 499 than 99. In other words, for the PSI daily returns and for a tolerance level in [0, 1/2) a
modeller will chose models with lags smaller than 499. It is then natural to consider the rate at which
the mean compression ratio grows with the lag length or block size.

2.3 The lagged dependence measure and the compression ratio gap
In Figure 3, we plot the increase in the estimated compression ratio between adjacent block sizes.
Block sizes of lags 2 to 10 in Figure 2 therefore correspond to lags 1 to 9 in the serial dependence
function of Figure 3. A point estimate for the plotted serial dependence function should be considered
to be the mean of the box-and-whisker plots in Figure 3, while the spreads around the mean shown by
the box-and-whisker plots are an approximation of the (100% and 75%) confidence intervals for this
function.18 The lagged serial dependence function with its associated confidence intervals provides a
natural mechanism for identifying the appropriate lag in an intertemporal model of stock returns and
is a generalisation of the autocorrelation function.

Another measure that would be of interest to study in order to identify appropriate lags for mod-
elling is the gap between compression ratios for the shuffled sequences and the compression ratio of the
original squence. Contrary to the serial dependence function, these compression ratio gaps would be
decreasing with increasing block size. Using this measure, a modeller would be able to find the appro-
priate lag for intertemporal modelling by finding the block size whose gap is within a given tolerance
away from 0.

17Each shuffle of the returns is random and is independent of the previous shuffle. We effectively sample with replace-
ment from the n! permutations of a vector of a length n.

18The confidence intervals for the lagged dependence function are approximations of the true confidence intervals.
They are obtained by differencing the confidence intervals of the compression ratios shown in Figure 2. They will be
exactly correct if the distributions of compression ratios are only different in their location parameter between block
sizes, otherwise they will be approximations of the form qτ (∆kci) ≈ ∆kqτ (ci), where qτ (·) is the population quantile
function, ∆k is the first-difference operator between block size k and block size k− 1, and ci is the ith compression ratio
of the shuffled returns series.
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(f) PSI Tick

Figure 3: The serial or lagged dependence function, which is the increase in the entropy rate estimator
at each lag over the entropy rate estimator at the preceding lag. Confidence intervals are approximate
and are explained in Footnote 18.
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2.4 A summary of the proposed test for serial dependence
For convenience, but at the cost of some redundancy(!), we summarise the steps in the test we propose
for serial dependence. The test can be used for arbitrary subsets of random variables, but here we only
discuss sets of consecutive returns starting at 1, in the hope that the extension is clear. These tests of
dependence among subsets of random variables are highly analogous to likelihood ratio tests of sets of
parameters in regression analysis, for example.

Given some sample data {xt1 , ..., xtn}, generated by a stationary ergodic stochastic process {Xn},
we test the null hypothesis:

H0 : for a given 1 < k ≤ n, X1, ..., Xk are jointly independent random variables.

Note that, choosing k = n, we can test for independence of X1, ..., Xn. To test the null hypothesis, we
proceed as follows:

1. Compute the empirical distribution function F̂ (x) for the data, as defined in (2).

2. Map each sample point xti to its discretised version19 using the transformation x̃ti 7−→ b28F̂ (xti)c.
The new collection of points constitutes approximately a sample of the process {X̃n = b28F (Xn)c}.
Note that under the null hypothesis, the random variables (X̃1, ..., X̃k) are independent.

For notational convenience, we denote each block (X̃ki+1, ..., X̃k(i+1)) by Ỹi, for i = 0, ..., I :=
bn/kc − 1.

3. Given a random permutation σ of k elements, write the sequence ỹσ(1), ..., ỹσ(I) to a binary file and
compress it. Given a random permutation φ of n elements, write the sequence x̃tφ(1) , . . . , x̃tφ(n)

to a binary file and compress it. Store the difference between the first and second compression
ratios. Repeat this step several times20 to obtain a distribution of the difference in compression
ratios under sampling variation. Let the empirical quantile function for this distribution be
denoted Q(·). Note that, under the null hypothesis, the distributions of (Ỹσ(1), ..., Ỹσ(I)) and
(X̃tφ(1) , . . . , X̃tφ(n)

) are the same. Therefore, under the null hypothesis, the distribution computed
before should be concentrated around 0.

4. Given a size for the test α ∈ [0, 1], reject the null hypothesis when 0 < Q(α).

We can quickly exemplify the application of this test to the daily, minute, and tick return data of
the S&P and PSI. Indeed, for k= 2, the distribution of the difference of compression ratios computed
in step 3 is represented in the left-most point of the box-whisker plots in Figure 3. A quick analysis
of these plots reveals that the independence hypothesis for consecutive returns would be rejected at
all confidence levels for the tick returns of the S&P and the PSI, and for the minute returns of the
S&P. Furthermore, the same hypothesis would be rejected at most confidence levels for the minute
returns of the PSI and daily returns of PSI and S&P. In other words, for most confidence levels, our
test rejects the hypothesis of independence between consecutive returns of the S&P and PSI for daily,
minute and tick frequencies.

2.5 Further examples of identifying lagged dependence
In this section, we introduce several other examples. Some of these examples come from synthetic
data and serve to corroborate the power and robustness of our test. We also include an example,
where our methodology is used to assess the goodness of fit of a GARCH(1,1) model, by studying the
intertemporal structure of its residuals.

19Here we assume a resolution of 8 bits, but a different resolution can be used.
20In our simulations we repeated this step 1000 times.
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2.5.1 Separate sample intervals for the S&P500 returns

A comparison of the tests for serial dependence between the early and late samples of the S&P50021, is
presented in Figure 4. The plots show that S&P500 returns showed much more intertemporal structure
in the early sample than in the late sample as measured by the entropy rate. The compression ratio in
the early sample is estimated at about 1.1%, while that of the late sample is about .7%. Furthermore,
at minimum, about 1000 lags are required to describe the behaviour of the returns in the early sample,
while about 500 may be acceptable in the late sample.

2.5.2 Brownian motion model for log prices

If log prices are described by a Brownian motion, then returns sampled on a uniform grid are in-
dependent and identically distributed random variables with normal distribution. We simulated one
realisation of a random walk over 500,000 steps, and we show the sampling uncertainty in our estimator
for various sample lengths in Figure 5. The estimates for the compression rate in the first 10, 50, 100
and 500 thousand steps are all close to zero, which is the correct quantity. The confidence intervals
obtained from our shuffling procedure reliably cover the point estimator.

2.5.3 Hidden dependence in time series

We construct an artificial example of a particularly challenging stochastic process to model, and we
use our method to uncover its intertemporal dependence structure. Consider the stochastic process
{Xn} defined on the positive integers N by

Xn =

{
εi n = 2i− 1 ∃i ∈ N
|εi| (2I{|εi| > 1.19} − 1) n = 2i ∃i ∈ N

for εi
iid∼N(0, 1) ∀i ∈ N, so that the pairs (X2i−1, X2i) are fully dependent, while any other pairs are

not. The number 1.19, was chosen so that the autocorrelation of the process would be approximately 0
for all lags greater than 1. In this case, an analysis based on use of the autocorrelation function would
erroneously suggest independence. Nevertheless, our method is able to discover its dependencies.
We simulate one realisation of one million observations from this process and plot the results for
increasing subsamples in Figure 6. Even for the first 10,000 observations our method is able to detect
significant intertemporal structure through an compression rate of 15% at a p-value of zero. The drop
in dependence at a lag length of 3 occurs because about half the odd-even pairs are broken in the
shuffling of size 3 blocks, so the method is able to identify the unique pairwise dependence structure
in this example. It is also interesting to notice how the compression rate approaches the optimal rate
of 50% as the sample size increases.

2.5.4 GARCH(1,1)

We fit a GARCH(1,1) model to the early sample (Daily1 sample) of the S&P500 returns series by
maximum likelihood. In Figure 7 we see that the residuals of this model exhibit substantial dependence
at all but the longest lags. By comparing this plot with Figure 4, we see that the compression
rate estimates of the original returns series and the model residuals are both close to 1.1%. The
GARCH(1,1) model therefore does not seem to remove much of the structure in returns, and the
model may in fact introduce more structure than it removes. By simulating one realisation of the
fitted model, we are able to recover much of its lag structure from the entropy rate estimators in panel
(b). We can also see that the simulated data does not exhibit as long a memory as the original S&P500.

21Summary statistics for the returns in the two periods can be found in Table 4.
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(a) Daily1 entropy rate estimators
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(b) Daily2 entropy rate estimators
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(c) Daily1 lagged dependence function
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(d) Daily2 lagged dependence function

Figure 4: Comparing the early and late sample periods of the daily S&P500 returns series, we can see
that the compression rate estimate is greater in the earlier sample.
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Figure 5: Compression rate estimators against block size for the Brownian motion model of log stock
prices.
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Figure 6: Subfigures (a)-(e) show the compression rate estimates for the hidden dependence model at
sample lengths 10, 50, 100, 500 and 1000 thousand observations. Subfigure (f) shows the autocorrela-
tion function of the sample with length 1,000,000.
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(a) GARCH(1,1) residuals
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(b) GARCH(1,1) simulation
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Figure 7: We fit a GARCH(1,1) model to the Daily1 sample of the S&P500 returns series by maximum
likelihood. Subfigures (a) and (c) pertain to the residuals of this model and Subfigures (b) and (d)
pertain to a single random simulation of the fitted model. (a) and (b) are the usual entropy rate
estimator plots, while (c) and (d) are the rank plots at 8 bit resolution as defined in Section 2.1.
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3 Conclusion
Information theory offers powerful methods that have wide applicability to the study of economic
problems. Using a data compression algorithm we are able to discover substantial intertemporal
dependence in stock returns in different countries, at different sampling frequencies and in different
periods. We argue that this dependence does not amount to evidence against the efficient markets
hypothesis, in contrast to some earlier research. We make the observation that statistical redundancy
is qualitatively equivalent to evidence of dependence, and we show how to test for intertemporal
dependence in time series using an estimator for entropy rate based on a data compression algorithm.
By proposing a test for dependence based on the entropy rate rather than entropy, we are able to
test for dependence among a group of random variables, which is an improvement over pairwise tests
proposed in the literature to date. By using an asymptotically optimal compression algorithm we
avoid having to estimate joint densities to estimate the entropy rate. Since general results for rates
of convergence are not yet available for the compression algorithm we use, we show how a shuffling
procedure can be used to nevertheless provide confidence intervals for our entropy rate estimates. We
discuss how our methodology can be used in the important task of model selection, in particular to
identify appropriate lags for intertemporal models. We provide strong evidence of the performance
of this testing procedure under full independence and full dependence. In particular, we see how this
test greatly outperforms procedures designed to detect only linear dependencies, e.g. analysis of the
auto-correlation function.

In future research, we would like to refine this test, study the estimator’s rate of convergence, and
provide more evidence of its performance. The potential applications of this estimator are very wide
since one only requires that the objects under investigation can be stored in a computer and have a
stable underlying stochastic structure.
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