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Abstract

This paper shows how to derive a complete set of optimality conditions
characterising the solution to a dynamic optimal income tax problem in
the spirit of Mirrlees (1971), under the assumption that a ‘first-order’
approach to incentive compatibility is valid. The method relies on con-
structing a novel class of perturbations to the consumption-output allo-
cations of agents, in a manner that preserves all incentive compatibility
constraints that are binding at a putative optimum. We are able to use it
to generalise the ‘inverse Euler condition’ to cases in which preferences are
non-separable between consumption and labour supply, to characterise the
dynamic evolution of the effective labour tax rate, and to prove a number
of other novel results about optimal tax wedges.
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1 Introduction

There is a growing interest among macroeconomists in dynamic optimal pol-
icy problems in the presence of asymmetric information. One such class of
problems that has received particular attention is that of multi-period optimal
tax analyses, based on the seminal works of Mirrlees (1971) and Diamond and
Mirrlees (1978). Yet the complexity of the models in which this analysis is
conducted has led to relatively few general analytical results emerging, of the
kind that might confidently inform policy discussions.! Considerable progress
has certainly been made under special assumptions regarding utility functions
and skill distributions,? but in what ways the associated results generalise re-
mains an open question. Indeed, the most clear (and most celebrated) analytical
statement that has emerged — the so-called ‘inverse Euler condition’ — is itself
particular to the quite strict requirement that consumption and labour supply
should be separable in all agents’ preferences. In short, there is much theoretical
work still to be done.

The aim of this paper is to contribute to that theoretical project. Working
under the assumption that the ‘first-order approach’ is valid — so that the set
of incentive compatibility constraints that binds at the optimum is known — we
set out a novel perturbation method that is capable of providing a complete
characterisation of that optimum. That is, we are able to obtain a set of dis-
tinct necessary optimality conditions exactly equal in number to the degrees of
freedom available to the policymaker. In itself this result holds out the promise
of substantially simplifying the numerical calculation of optimal tax schedules,
which reduces to a ‘mechanical’ question of solving a system of simultaneous
equations (with no need to use dynamic programming techniques). More sig-
nificantly, the conditions that we derive imply several novel qualitative results
regarding the character of dynamic optimal tax schedules.

First, and of substantial theoretical interest, we are able to generalise the
inverse Euler condition to situations in which an agent’s within-period consump-
tion and labour supply levels are non-separable in utility. Using this result we
are able to reach the general conclusion that optimal taxes should always deter
savings, in a well-defined sense, when consumption and labour supply are ei-
ther substitutes or separable from one another in preferences, but that this does
not generalise to the empirically relevant case in which they are complements.
Similarly, and again using our generalisation of the inverse Euler condition, we
show that the long-run ‘immiseration’ results that can characterise dynamic
Mirrlees economies with infinitely-lived dynasties under preference separability
again generalise to the case of substitutes, but not of complements. The previ-
ous two results seem closely related, and shed some light on the precise dynamics

Tn the words of one prominent recent survey (Mankiw, Weinzierl and Yagan (2009)):
“The theory of optimal taxation has yet to deliver clear guidance on a general system of
history-dependent, coordinated labor and capital taxation ... Most of the recommendations
of dynamic optimal tax theory are recent and complex.”

2Important recent contributions in this regard are Farhi and Werning (2010) and Golosov,
Troshkin and Tsyvinski (2011).



responsible for immiseration.

In addition to savings distortions, another important economic variable that
features in dynamic optimal tax analyses is the implicit labour tax wedge — that
is, the wedge between an agent’s within-period marginal rate of substitution
between consumption and production, and the marginal rate of transformation.
In an important recent paper Farhi and Werning (2011) provide a novel charac-
terisation of the dynamics of this wedge when the first-order approach is valid,
focusing particular attention on the case of separable preferences when labour
is supplied isoelastically. In this paper we provide an analogous expression that
holds under general preference specifications, and show how it can be interpreted
in terms of a dynamic ‘efficiency-equity trade-off’ of the kind often emphasised
in the traditional public finance literature.?

Accounting for these results on a technical level, we show that the set of
‘intratemporal’ optimality conditions characterising allocations when skill dis-
tributions are iid is identical to the set of conditions that must hold in a static
optimal income tax model, providing an important mapping between the tradi-
tional ‘public economics’ and more recent ‘mechanism design’ literatures.? But
when skills are Markov in a more general sense there is a reduction by one in the
number of intratemporal optimality conditions — supplanted by an additional
intertemporal condition, capturing the capacity of the policymaker to spread
through time the distortions required to prevent more productive agents from
mimicking. The dynamic optimality condition for the labour wedge is precisely
this condition — implying that any persistence in the labour wedge must be in-
herited from persistence in the productivity process, rather than being induced
directly by the optimal plan.

We are additionally able to confirm some more common observations re-
garding within-period character of the labour wedge: that this should always be
weakly positive (it is never optimal to subsidise work), and zero at any upper
support for the productivity distribution. Once again, these familiar properties
of the static model generalise with remarkable ease to dynamic settings.

The key argument that lies behind all of these results is that if the first-order
approach is valid then it is always possible to construct a set of perturbations
to optimal (equilibrium) allocations such that local incentive compatability con-
straints will continue to bind. That is, if we know that agent A is just envied by
agent B in equilibrium (so that truth-telling is only weakly preferred to mimick-
ing by the latter), we can construct simultaneous changes to the consumption
and income levels of each such that the resulting increase in agent B’s utility
from truth-telling is exactly the same as any increase in the utility he or she
could obtain by mimicking agent A. If an allocation is optimal, such perturba-
tions cannot be used to generate surplus resources, provided they respect all
prior incentive compatibility constraints.

Specifically, this approach requires that one should define perturbations to

3Farhi and Werning do provide an expression for the evolution of the labour wedge under
general preference specifications, but its dependence on multipliers makes this comparatively
difficult to interpret.

4The distinction is drawn by Diamond and Saez (2011).



the optimal allocation that simultaneously satisfy three conditions: local incen-
tive compatibility, reversibility, and welfare-neutrality. The first of these is par-
ticular to dynamic screening models: a perturbation to outcomes that changes
the incentives for truthful reporting at the same time as it changes allocations
will not generally be of use for our purposes, due to the discrete shifts in con-
sumption and output patterns that would follow as agents change their reports.
We are interested, rather, in studying perturbations to allocations whilst hold-
ing constant agents’ type reports (exploiting the revelation principle to focus on
a mechanism whereby agents report their idiosyncratic productivities directly).?

The second of the conditions is necessary if optimality conditions are to be
stated with equality. It demands that if we can increase the consumption and
output allocations of agents along some vector A at the margin, then we can also
increase them along the vector —A. In a simple consumption-savings problem,
this is the equivalent of noting that we must not be at a corner solution if we
are to state the consumption Euler equation with equality.

The final requirement is that the perturbations should be welfare-neutral
from the perspective of the policymaker in the initial time period. This is
useful, since it means we can focus simply on whether any given perturbation
raises surplus resources in assessing whether it is to the advantage of the poli-
cymaker. Satisfying these three requirements for a broad class of perturbations
— far broader than the intertemporal utility reallocations already applied in the
literature when deriving the inverse Euler condition — is a non-trivial challenge,
and establishing a general procedure for doing so forms the heart of the analysis
in what follows.

1.1 Literature review

To date, two closely related methodological approaches to solving dynamic prob-
lems under asymmetric information have emerged in the macroeconomics litera-
ture. The first, and most widely-used, follows the foundational work on dynamic
games by Abreu, Pearce and Stachetti (1990), considering directly the planner’s
problem of maximising a given objective criterion subject to a series of lifetime
utility constraints that must hold in each time period in equilibrium (prevent-
ing any incentive for agents to mis-report their private information). Examples
include Atkeson and Lucas (1992), investigating consumption allocations across
agents subject to idiosyncratic taste shocks; Kocherlakota (1996), looking at
consumption risk sharing when incomes are stochastic; Golosov, Troshkin and
Tsyvinski (2011a) in a dynamic Mirrlees model; and numerous other papers
besides. An important feature of these approaches is the reformulation of the
policymaker’s problem into an equivalent recursive choice across current out-
comes and a vector of discounted utility promises — the latter summarising the
dynamic incentives that are being provided to ensure truthful reporting.

5The ‘static’ optimal income tax literature also makes use of perturbation analysis, but
without exploiting direct revelation mechanisms: rather, the focus is directly on changes to
the tax schedule subject to which all individuals choose. See, in particular, Roberts (2000)
and Saez (2001).



An important refinement to this method — particularly in the context of
the present paper — has been provieded by Kapicka (2011). This extends the
general work of Pavan, Segal and Toikka (2011), and illustrates the potential of
the ‘first-order approach’ to reduce the state-space required in dynamic Mirrlees
models — particularly in the (realistic) event that agents’ productivities evolve
according to non-iid processes. Specifically, Kapicka demonstrates that one re-
quires just two variables to summarise the policymaker’s past promises to an
individual with a given history of productivity draws: a promised lifetime utility,
and a value expressing how this utility changes at the margin as the agent’s type
changes. This method substantially eases the computational burden associated
with calculating optimal allocations by the ‘primal’ (promised utilities) recur-
sive technique, relative to existing methods valid under non-iid assumptions —
notably that of Fernandes and Phelan (2000). It has been adopted fruitfully by
Farhi and Werning (2011) and Golosov, Troshkin and Tsyvinski (2011b).

The second general approach, referred to as the ‘dual’ method by Messner,
Pavoni and Sleet (2011), follows Marcet and Marimon (1998) in exploiting the
evolution of costates associated with lifetime utility constraints, in order to
augment the policymaker’s objective criterion in a manner that ensures incentive
compatibility constraints are always satisfied. The problem is again set in a
recursive form, but with no explicit choice over a set of future utilities; instead
the Pareto weights that are placed on distinct agents’ utilities in the policy
objective are increased exactly as necessary to ensure the resulting optimisation
satisfies incentive compatibility. Alongside important work by Mele (2011),
extending the work of Marcet and Marimon to repeated hidden action problems,
this method has recently been applied to optimal dynamic tax policy by Sleet
and Yeltekin (2010b). The latter authors have also provided a general analysis
applying the earlier theory to settings with private information (see Sleet and
Yeltekin (2010a)), as has recent additional work by Marcet and Marimon (2011).

Both of these methods arrive at solutions to the underlying problem through
functional iteration on a Bellman-type operator. Whilst this has the advantage
of quite widespread applicability, it necessitates numerical methods that may
prevent the essental analytical character of the solution from being completely
clear. Rather than follow these papers in pursuing a variant upon the dy-
namic programming literature, here we instead develop a method more closely
related to the calculus of variations. That is, we assume that an optimum has
been found, and ask what properties that optimum would have to satisfy. This
logic has already been applied by Kocherlakota (2005) and Golosov, Tsyvinski
and Werning (2006), among others, to obtain one particular necessary optimal-
ity condition in a dynamic Mirrleesian economy for which preferences between
leisure and consumption are separable: this is the so-called ‘inverse Euler condi-
tion’, linking the marginal cost of providing consumption utility to a consumer
in one time period to the expected value of the same marginal cost across dis-
tinct realisations for that consumer’s idiosyncratic productivity level in the next
period. The marginal cost of providing consumption utility is the inverse of the
marginal utility of consumption. The basic idea is that if an allocation is op-
timal the policymaker cannot transfer through time the provision of a unit of



utility to a consumer with a particular productivity history and raise a resource
surplus.

In this paper we show that the perturbation logic behind the inverse Euler
condition generalises considerably, provided one is willing to accept the first-
order approach to incentive compatibility. This remains something of a leap.
The only known general conditions under which the validity of the first-order
approach can be assured impose requirements on the properties of solutions
obtained under it;® these conditions cannot, therefore, be confirmed ex-ante,
based on the model’s priors alone. But as noted above, a number of papers
have made good progress understanding dynamic tax models by applying com-
putational techniques that assume the first-order approach is valid, confirming
this ex-post. The perturbation method presented here is intended complement
these analyses, retaining their caveats.

2 Model setup

The basic framework that we use essentially follows the recent textbook treat-
ment of Kocherlakota (2011), except that we allow for a general specification
of preferences from the outset. An economy is populated by a large number
of agents, modeled as a continuum with each agent indexed by a position on
the unit interval. Each agent is the current manifestation of an infinitely-lived
dynasty, and gains utility from that dynasty’s expected consumption and leisure
from the current period into the infinite future. Labour is the only factor of
production and there are no firms — so agents can be thought of as directly
choosing the level of output that they produce each period via their labour sup-
ply decision. Their preferences over output and consumption profiles from time
t onwards are described by the function Uy;:

Ur=E; Y Bu(Corsr Yorsi Orrs) (1)

s=0

where u : Ri — R. ¢ty and yiys are, respectively, the agent’s consumption
and output levels in period t + s, 8 € (0,1) is the dynasty’s time preference
parameter, and 6, is an idiosyncratic productivity parameter that allows one
to map from a level of output to a quantity of labour supply. The productivity
parameter belongs to a set © C R, which is time- and history-invariant.” For the
entirety of this paper we work under the assumption that © contains a finite
number of elements N, which turns out to provide the most straightforward
setting in which to present the main arguments. We generalise to the (more
conventional) assumption that © is an interval of the real line in a companion

6See, for instance, Theorem 5 in Kapicka (2011).

"The analysis is made simpler by assuming that © itself does not depend on past draws.
The probability of any one element of ® being drawn after a given history can always be made
arbitrarily small, so this does not seem a particularly restrictive assumption.



paper (see Brendon (2011)). We also assume an infinite horizon, though none
of the optimality conditions that we derive is dependent on this perspective.®

Expectations are taken across all stochastic variables relevant to the equilib-
rium evolution of the agent’s utility (ultimately, drawings from O at each future
horizon). We analyse the model as if nature is responsible at the start of time
for drawing a distinct element for each dynasty from the infinite-dimensional
product space ©°°, say 0°°, according to some probability measure on O, 7g.
These draws are iid across dynasties. At the start of each time period agents are
informed of their within-period productivity, so that at time ¢ they are aware
of their complete history of draws to date, 8 € ©f, where 6" is a t-length trun-
cation of 6°°. This purely idiosyncratic information is private knowledge to the
agent, so policymakers must provide sufficient incentives to prevent mimicking
in any tax system that is established.

To keep the problem regular we assume that the utility function is twice
continuously differentiable in all of its arguments, with u. > 0, u, < 0, and

Uce  Ucy

ug > 0, and that the partial Hessian [ ] is negative definite for any

Ucy Uyy
given 6. We additionally impose Inada conditions: lim._, o uc (¢, y;60) = 0 and
lim._,o u. (¢, y; 0) = oo for all non-zero, finite (y, ) pairs, and lim, ., u, (¢, y; ) =
—oo and limy_ uy (¢, y;0) = 0 for all non-zero, finite (¢, ) pairs. These condi-
tions will ensure an interior solution obtains at all finite horizons. To maintain
the interpretation of the model as an optimal tax problem with unobservable
labour supply we impose that marginal changes to 6 will reduce the marginal
disutility associated with a unit of extra output when consumption and utility
(and thus, implicitly, labour) are jointly held constant. This can be shown to
imply:
Uyp — uyy% >0 (2)
Uy

Similarly, if consumption and utility are jointly held constant as 6 is changed
then labour supply must implicitly also be being held fixed — and thus the
marginal utility of consumption should likewise be constant. This is quite easily
shown to imply the following:

Ug
Ueh — Uey ) =0 (3)

Finally, a variant upon the Spence-Mirrlees single-crossing condition is im-
posed, to ensure higher realisations of § can naturally be associated with higher
productivity:

u (C//7y//;911) —u (C/7y/;911) > (c//7y//;91) —u (C/,y/;el) (4)

whenever ¢ > ¢, y” > and 0" > 6.
Note that this condition is slightly stronger than could be obtained simply
by differentiating the expression for the slope of a within-period indifference

8 An interesting feature of our approach is that it provides a novel representation of the
optimality requirements even in a ‘static’ optimal income tax model.



curve in output-consumption space (g—; = —2); although (4) implies that this

indifference curve should be flattening in 6 (as seen by assuming one of the
agents is indifferent between the two bundles), it also implies certain properties
are associated with utility changes between bundles across which neither agent
is indifferent, and we exploit these properties to some extent in what follows
(notably when stating sufficient conditions for the ‘first-order approach’ to be
consistent with global incentive compatibility). Occasionally it is useful also to
state the condition in terms of marginal rates of substitution: if #” > ' then
condition (4) implies for all (¢,y) pairs:

uy (c,y;:0") P (c,y:0")
ue (c,;0") ue (c,y;60')

This follows directly from the fact that indifference curves in consumption-
output space must be ‘flattening’ as 6 increases, provided (4) holds.

The policymaker’s role is to choose, at the start of the first time period, effec-
tive tax schedules for all future periods that will link an individual’s consumption
to their output, conditional on their history of actions to date. The purpose of
this choice is to maximise some social welfare function, defined across the set
of possible equilibrium allocations. Individuals can be thought of as devising
history-contingent action profiles to implement in each future time period, given
the mechanism with which the policymaker presents them. Since the revelation
principle will apply in this setting,” we may restrict policy choice to direct reve-
lation mechanisms that deliver consumption and output bundles to individuals
as functions of their current and past productivity reports — deferring a con-
sideration of decentralisation schemes for later work. In treating consumption
as a choice variable of the policymaker in this way, we are implicitly assuming
that there are no opportunities for the individuals to engage in ‘hidden’ saving
— so that the policymaker could always behave as if taxing savings at a 100 per
cent marginal rate, if this were necessary to prevent ‘unwanted’ consumption

(5)

deferral.' We generally denote by 5:; : © — O individual 4’s report at time
t as a function of their actual productivity (where this function is measurable
it : .
with respect to 6"), by 9" . 0! — O the history of all such reports up to time
t, and by "7 . 0% - 0™ a complete sequence of reports. We occasionally
AA7t . AA?
refer to 0 (+) as the t-truncation of 0" ().

For the remainder of the paper we follow the majority of the literature and
assume a utilitarian policy criterion, assessed from the perspective of the initial
time period. This criterion has the advantage in a dynamic context of being
the only objective that satisfies ‘welfarism’ at every horizon that is also time-
consistent. That is to say, social welfare is assessed in each period as a function

9We seek a Bayes-Nash equilibrium of the game played between the policymaker and all
individuals whose types may be drawn from ©°°. The revelation principle states that any
such equilibrium can be supported by a direct revelation mechanism.

10Da Costa and Werning (2002) and Golosov and Tsyvinski (2006) consider economies
with hidden savings opportunities; these substantially reduce the options available to the
policymaker.



of individual lifetime utilities alone, and if two candidate policies deliver exactly
the same outcomes between periods 1 and ¢ then the relative preference of the
policymaker between those two paths will be the same at time 1 as at time .
Whilst no claim is made that these normative features should be elevated above
all others, they do arguably allow for the simplest treatment of the dynamic tax
questions that are of chief interest to us.

The policymaker’s primal choice problem is, therefore:

ma; =l (e (0%°), 2 (0%°) : 04) dmrg (0 6
{thm),ytﬁém)}flfewgﬁ (0 (0,31 (0°):0,) dmo (6%)  (6)

subject to ¢; (°°) and y; (§°°) being measurable with respect to #°, together
with the incentive compatibility constraint:

/Oo iﬁsu (Cts (0%°) , Ypys (0°°) ;0145) dme (9°°|9t) (7)
s=0
= /9OQ iﬁsu <ct+3 (/éoo (900)> y Yt+s <§OO (900)> ;9t+s> dre (900|9t)

which must hold for all ¢, all #*, and all functions 9" . ©> — 6> whose s-

truncations 0 (+) are measurable with respect to 0° for all s > 1; and finally the
resource constraint:

[ let(6™) = w 6™ drmo (6) + Ava = Ridy )

where A; is the quantity of real bonds that the policymaker purchases for time
t, each paying R; units of real income in that period. The initial value Ry A; is

(H Rﬁg.) A] o

r=1

given. Dynamic solvency requires that limg_, oo

3 Full information benchmark

In a manner equivalent to Kapicka (2011) and Broer, Kapicka and Klein (2011),
we will ultimately focus our attention on a relaxed version of the incentive
compatibility constraint, arguing (in the context of a discrete number of types
in ©) that it is sufficient to impose a binding restriction to prevent agents
with histories (§"~",6;) mimicking those with histories (6°~",6}), where 0, =
max {0 € © : § < 6,}. The basic reason for our making this assumption — that
envy is always directed ‘downwards’ from one type to the next in equilibrium — is
familiar from the analysis of static optimal tax models, and was articulated most
clearly by Dasgupta (1982). To understand why it is likely to hold, it is useful

11Tn what follows it is often convenient to suppress the explicit dependence of ¢; and y; upon
0°°; we also occasionally index these functions with individual-specific superscripts where this
is most natural.



to start by considering the character of optimal policy when the idiosyncratic
productivity draws are common knowledge.

If the policymaker is aware of agents’ types each period the incentive com-
patibility constraint (7) can be neglected, with lump-sum taxation used to im-
plement a first-best. We summarise four important properties of this first-best
in the following list. The proofs of each statement are trivial, and hence omitted,
with the exception of the fourth, which is provided in the appendix.

1. In the full information benchmark the optimal allocations c¢; (6°°) and
y¢ (0°°) are measurable with respect to 6;.

2. The following conditions hold for all ¢ > 1 and all ¢ € [0, 1]:

ue (¢, yis 03) = —uy (cf, yi; 0) 9)
Ue (ci,yi;ei) = BRi+1 Z Ue (c§+1,y§+1; 9i+1) e (9i+1|9i) (10)
0§+1€9

3. The following condition holds for all ¢ > 1 and all agents i,5 € [0,1]:
ue (¢, 15 0;) = ue (d,yi;9i) (11)

In the event that consumption and labour are additively separable in the
utility function we will additionally have u., = u.9 = 0, and this condition
then implies equalised consumption across all agents (since u.. < 0).

4. Hi > 9{ implies u (ci, vl 0;) <u (cg, yi; 0{), so long as leisure is a normal
good (at autarky prices).

Summarising the main lessons of these four statements in turn, we know from
the first that there is no incentive for the policymaker to introduce any form
of history dependence in outcomes. The fact that a particular individual has
been very productive in the past makes no difference to their optimal current
consumption-output bundle, independently of the contemporary productivity
draw 6;. In this sense the first-best solution offers no scope for agents to claim
credit for past accomplishments. The second statement implies that the opti-
mal solution for a utilitarian policymaker involves zero marginal distortions on
savings and labour supply, whilst the third points to equalised marginal con-
sumption utility (and, thus, output disutility) across agents each period. Since
agents who are more productive have, by definition, a higher marginal product
for a given quantity of labour they will generally be required to work longer
hours at the optimum. This is the logic behind the fourth condition — that
utility is decreasing in type so long as leisure is a normal good. This last result
is key to understanding which incentive compatibility constraints will bind at
the optimum: together with the fact that there is no history dependence in out-
comes at the first-best, it strongly implies higher-type agents would mimic their
lower-type peers if they had the capacity to do so — that is, in the event that
the policymaker could only verify agents’ output levels, and not their types.

10



4 The first-order approach to incentive compat-
ibility

We now move to the constrained problem, in which the policymaker is forced
to abide by incentive compatibility constraints — and hence will be prevented
from providing higher-productivity types with a lower level of utility than their
(lower-productivity) peers. As mentioned above, we retain a focus on the case
in which © contains a discrete, finite number of elements. To apply our per-
turbation method, we first need to be clearer on the set of constraints that will
bind at the optimum.

For all periods ¢t > 1, define Omt O> — O as the reporting strategy
associated with truth-telling in all periods up to ¢, at which point the agent
mimics a type one lower and follows an optimal reporting strategy thereafter:

b\:,t (G/OO) = [ 1179127 t 179;I7 ;Grl:]

where 0] = max {9 €0:0< 9'} and { i1, 0f 0, } are then optimal choices
conditional upon prior reports. So long as the type distribution is Markov,
outcomes for an agent with a given reporting history will in fact be independent
of the veracity of that reporting history — so we are free to focus exclusively on
‘one-off’” deviations from the truth, with {67,,,6/,,,..} = {0,,1,0,,0,...}. If

0, = min {0 € O} then we normalise @:t (0°°) = 0°°. If incentive compatabilty
is said to be holding ‘downwards’, the following is true:

L s 07 s (07)011) e (61 (12)

> [ S (oo (B2 09)) s (520 0%) 010.) e (01
s=0

So the agent with history 6" is just indifferent between reporting 6, truthfully
and mimicking a type one lower, provided 6; is not itself the smallest element
in ©. Again, for any Markovian productivity process it must be true that if

=1
(12) holds for agents whose past reports of §  were truthful, it must hold for

all agents with past reports of gt ' and a true contemporary productivity draw
equal to #;. We are interested in the conditions under which this restriction im-
plies global incentive compatibility — that is, for an arbitrary reporting strategy
at t, 9 : O — O, defined by:

/9\:75 (9/00) = [ 1 /27 t 179::/7 ;/+17J

for any 0 € ©, with {6/,,,0},,,...} chosen optimally thereafter, we want to

11



know when it will be the case that equation (12) implies:

LS e (67 e 07)3614.) dre (616 (13)
s=0

> /Oo iﬁsu (Ct+s </05th (900)> y Ytts </9\th (900)> ?9t+s> dre (goowt)

This problem lies at the heart of discussions on the applicability of the first-
order approach in problems of this kind — an issue first considered by Mirrlees
(1971), and studied in great depth in the context of dynamic models by Pavan,
Segal and Toikka (2011). The first-order approach takes as its starting point the
fact that under any incentive-compatible direct revelation mechanism no agent
can induce an increase in their expected lifetime utility by changing their report.

~t—

We can define the value function W (/9\,5; 0,0 ), withW:0x0 x01 - R
specifying the maximum lifetime utility that could be expected for an agent

~t—1
whose past reports were # | whose current productivity is 6; and whose current
—~ ~t—1
report is #;. Then the approach notes that for a given (Ht,H ) pair this
function must have a global maximum where /H\t = ;. Thus instead of choosing
directly from among the (difficult to characterise) set of allocations for which
~00
0

condition (13) is explicitly asserted for all admissible functions one may

a,t’
~t—1

instead choose simply from the set for which W (-; 0;,0 ) is known to have

a stationary point at 6;. In the case that a discrete number of types features
in © (rather than © being a proper subset of the real line), it is not directly
apparent what this implies: we cannot place a restriction on the derivative of
W with respect to 6, if there is no possibility of marginal changes to the agent’s
report. Yet we may invoke our earlier result that the first-best optimum involves
decreasing utility in 6 to apply a ‘first-order’ approach in which choice is from
the set of allocations such that the condition:

t—1

W (at;etﬁt‘l) > W (9;;@,5 ) (14)

is imposed for 0, = max {0 € © : § < 6,}.12 That is, consistent with the famil-
iar logic of the Mirrlees model, incentive compatibility must be imposed ‘down-
wards’. It should be stressed that in general condition (14) is not sufficient

~t—

5N 1
for 0, € arg; max W (9,5; 0,0 ) to hold, though it certainly is necessary; the

validity of the approach needs to be checked carefully in any given case.
Graphically, the potential pitfalls of the approach are illustrated using Fig-
~t—1
ure 1. The vertical axis here denotes the value of W (-; 0,0 for all given
values of an agent’s t-dated type report, which is mapped on the horizontal
axis. To be sure that the incentive compatibility constraints are binding across

all potential reports we would need to impose that this function is maximised

12No restriction is imposed in the event that §; = min {0 € ©}.

12



w(e)

W

g 6 0

Figure 1: Local incentive compatibility need not imply global.

~t—1

at W <9t; 0;,0 ) Since this is an onerous requirement, as noted, our ‘first-

order’ approach instead asserts simply that condition (14) must hold. We as-
sume it is binding, and represent this by the horizontal line linking the value
~t—1

of W (-;et,e ) at the relevant arguments in Figure 1. But knowing that

~t—1
%4 <~;9t,9 ) does not change between 6, and 6; is clearly not the same as

~t—

knowing that 6, € argg max W (/H\t; 0,0 1). Whilst the rest of the value func-

tion certainly may be characterised by gradual and steady decay from the max-
imum, as in the case of the lower line AA in the figure, we equally cannot rule
out the possibility of higher values being obtained elsewhere — as in the case
of the line BB. In short, a stationary point need not imply a global maximum.
The general implication (which extends to cases in which © is a continuum) is
that the first-order approach admits a broader set of possible policies than the
underlying incentive compatibility constraints, and unless one knows something

-1
0

about the properties of W (-; 0, ) away from 6; and 6; one can never be

sure that a candidate policy satisfying condition (14) will additionally satisfy
the full constraint set.

For this reason the following result is useful. The proof can be found in the
appendix.

Proposition 1 Sufficiency of first-order approach: Suppose the type set ©

13



contains only a finite number of elements and that under a given policy strategy
~ ~t=1 <

the value function W (Qt; 0,,0 > satisfies increasing differences in (04,0, ), so

that the inequality

(5;’, 9;’,@“) W (ﬁt; 9;’,@“) > W (5;’; 9;,5“1) —w (5;; 9;,@“)

NS 4 1 -~ 7 / ;
holds for all (Qt,ﬂt,ﬁt,ﬁ) € ©* such that 0, > 6, and 0, > 0,. Then if
condztwn (14) is known to hold with equality for all 6, € ©\0 and all histories
9t € Ot 4t must also be that W <9t,9t,9 1) > W (9 Gt,ﬁ ) holds for
all 0 € ©\ (0;,0;) (where 0, = max{0 € © : 0 < 0;} and = min{f € O}).

This is a natural translation to our discrete-type setting of Theorem 5 in
Kapicka (2011).'2 Like that result, it is only an intermediate step in providing
sufficiency conditions for the first-order approach, since the value function in any
given setting will itself depend endogenously upon the chosen policy. But the
result is nonetheless useful in supporting the arguments that follow. In words,
it implies that a solution to the problem in which just condition (14) is imposed
will also be a solution to the full problem (subject to the entire constraint set),
provided the former solution exhibits the given increasing differences property.
Moreover, combined with the single-crossing condition we have enough here to
assert something much stronger about the iid case, which we present in the
following Corollary:

Corollary 1 Suppose that agent-level productivities follow an iid process, and
that the single-crossing condition (4) applies. Then provided a given policy strat-
egy requires higher-type agents with a given history to produce higher output
quantities than lower-type agents with the same history, and simultaneously
provides them with higher consumption (in the period in which these produc-
tivities obtain), condition (14) holding with equality is sufficient for incentive
compatability.

Proof. When productivity shocks are iid, agents’ future values (from ¢+ 1 on)

~t
for a given report # are identical in expectation from the perspective of time ¢,
irrespective of their true types. Hence increasing differences will follow provided
we have, under the given policy:

u <§:; 9;’,?_1) —u (@;, 92’,?_1) > u <§:; 92,@75_1) —u (@;, 9;,§t_1>

~ ~t—1\ | ~t ~t
where (et;et,e ) is used to denote u (ct (0 (0 )) S Yt (0 (0 )) ;Ht) for
~t 5o ~t—1 ~ N 1 ~I1 ~/ 1 ,
0 (6>) = (9 ,et), for all (9t,9t,9t,9t) € ©* such that 0, > 0, and 0} > 0.
The result is then a direct implication of the single crossing condition, given the
assumption that output and consumption are increasing in type. m

1ETha‘c theorem imposes that the derivative of W with respect to 6; should be increasing
in 9,5.
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Whilst this result clearly still depends on the optimum having the particular
property that output and consumption are increasing in type (for agents with a
common reporting history), this is a very straightforward condition to check in
any particular calculated example, and it will indeed generally hold under the
optimal policy from the set satisfying condition (14).

In what follows we refer to the problem of policy choice from among the set of
direct revelation mechanisms satisfying condition (14) as the ‘relaxed’ problem,

2N ~t—1
in contrast with the ‘general’ problem that imposes 6, € argg max W (Ht; 0,0 >
~t—1

directly for all (Gt,G ) € 0t Our focus will be on the properties of the

solution to this relaxed problem, under the assumption that the solution to it
coincides with the solution to the general problem. If this is the case, then
we know that any other candidate policy that satisfies the constraint set of the
relaxed problem is inferior from the policymaker’s perspective to the solution
to the general problem. We exploit this fact in what follows, showing how to
perturb allocations in such a way that the constraint set of the relaxed problem
must remain satisfied — and hence allocations must be inferior to the general
problem’s optimum. We therefore make the following assumption throughout:

Assumption 1: The solution to the relaxed problem also solves the general
problem.

Since we are interested in perturbations about the optimum it also helps to
assume:

Assumption 2: The solution to the relaxed problem is interior, in the sense
that ¢; (0°°) > 0 and y, (™) > 0 for all ¢ > 1 and all °° € ©.

We justify this by appeal to the Inada conditions that we have imposed.
The results that we have should generalise to corner solutions, but only with
substantial additional notational baggage.

5 Applying perturbation analysis

5.1 A diagramatic primer

This section introduces the main focal point of our analysis: how one can apply
local perturbations to optimal consumption and output allocations in order
to obtain a set of conditions that the optimal tax system must satisfy. The
underlying innovation here is methodological, and the presentation builds up our
new approach step by step. We additionally state important economic results
relating to the character of optimal distortions — notably optimal savings wedges
and optimal implicit income tax rates — whenever this is made possible by the
general analysis. Since our focus is on direct revelation mechanisms rather
than specific decentralisation schemes, these economic results must remain at a
relatively high level of generality: they relate more to the direction in which any
optimal tax wedges will distort allocations (relative to autarky) rather than the

14We distinguish between ‘relaxed’ and ‘general’ constraint sets in analogous fashion.
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Figure 2: Graphical introduction to the policy trade-off

size and nature of specific taxes. Obviously it is hoped that further work will
use the insight provided here to design effective decentralisation schemes.

The analysis that we devise is easiest to understand with the aid of an
indifference curve map, linking output on the horizontal axis and consumption
on the vertical. To make the relevant ideas concrete, and allow us to illustrate
some important intuition for the dynamic tax problem, Figure 2 shows such a
mapping.

The two within-period indifference curves are drawn for arbitrary distinct
types 61 and 65, with 5 > 0. The diagram can be used to show intuitively why
positive effective marginal income taxes are desirable at a constrained optimum.
Recall that the first-best allocation involved consumption-output bundles for
each agent such that u. = —u,. Diagramatically this would correspond to a
situation in which each agent’s bundle is such that their indifference curve has a
slope of 1, as if there is no taxation of income at the margin. We may suppose for
illustrative purposes that this is true of points A (for the agent of type 61) and
B (for type 03) in the diagram. We also know that at a first-best allocation the
marginal utility of consumption would be equalised across agents (representable
in the the case of separable utility by equalised consumption across all agents),
and that there would be no history dependence in allocations.

When incentive compatibility constraints must additionally be satisfied these
conditions can no longer be satisfied simultaneously. Figure 2 shows a situation
in which the policymaker has chosen to violate just one of them: the equality
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of marginal utility across agents. Type 0> consumes at B, and is entirely com-
pensated within the present period for choosing not to mimic type 67 (which
would involve consumption at A). Yet this does not correspond to a second-best
allocation. As the analysis of static optimal income tax problems has shown,
the policymaker can improve matters by violating productive optimality for the
lower-type agent. If type 6, is asked to produce at a point somewhere to the
south-west of A along the curve I (), the ‘information rent’ that the higher-
type agent can extract will be reduced. That is, the utility level type €5 could
obtain by mimicking type 61 would fall, reducing the need for (wasteful) compen-
sation — and thus freeing up resources to be redistributed to lower-type agents.
Thus, perhaps counterintuitively, an equilibrium in which #; is dissuaded from
producing at the margin, via positive marginal income taxes, may be better for
that agent than one in which there are zero marginal taxes.

Identical ‘second best’ logic may be applied to assert the desirability of
spreading incentives through time. Rather than ensuring that the higher-type
agent is just indifferent within a period between truthful reporting and mim-
icking, it will be preferable for that agent’s within-period utility to be reduced
— generating a strictly positive marginal benefit when the associated resources
are redistributed — and for their discounted future utility instead to be raised
in expectation by an offsetting amount. The latter distortion will come at zero
initial marginal cost when one starts from a situation in which there is no his-
tory dependence — and so the theory of the second best applies: it will be better
to introduce an extra dynamic distortion to mitigate the size of others.

5.2 Developing a perturbation approach

Our purpose is to make formal the intuition highlighted in the preceeding dis-
cussion. The presumption throughout is that the policymaker is able to solve
the ‘relaxed’ problem, in which equation (14) replaces the complete constraint
set, and note again ours twin assumptions that the solution to this problem
coincides with the solution to the general problem in which the full constraint
set is imposed, and that consumption and output allocations are strictly posi-
tive for all agents at all finite horizons. Conditional upon a particular reporting
history prior to the current period t, @t 1, an agent’s time-t report-contingent
consumption and output allocations under the optimal scheme can be described

~t—1
by an N x 2 matrix X; (9 >, with each row in this matrix corresponding to a

particular 0; € ©,!° and the columns listing, in turn, consumption and output
levels for the given reported productivity draw. Our aim is to show how these
allocations can be perturbed by the addition of one or more of a particular set
of N x 2 matrices of continuously differentiable parametric functions, which in
the generic case we denote by A (§) (with A : R — R2V) for some relevant pa-
rameter ¢ (perhaps the consumption or utility increment implied by the given

15We assume that these are ordered in ascending values for ﬁt, with the lowest (reported)
type’s allocation in the first row of X* and the highest type’s in the Nth row.
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perturbation for an agent of the highest type). These functions are always nor-
malised such that A (0) = 0. In certain cases we will additionally allow changes
to be spread through time, with the consumption and output of agents with

~t—1
a common reporting history changed at ¢ — 1 (as well as at t), according
to an analogous function A_; (§) (with A_; : R — R?). We wish to construct
these A and A_; functions so that they satisfy the following three properties:

1. Incentive compatibility constraints that bind under the relaxed problem
for each time period up to the tth when allocations for agents with report-

~t=1 -1 -1 ~t—1
ing history 8 are (c¢f_; (6 Ui, (10 att—1and X/ (0 at
s (1 (8o (0 ) 3 (0
t will continue to bind when allocations are <cjf_1 (9 ) T (9 )) +
A_1(6) att—1and X} (/H\til) + A () at t. Hence the perturbed alloca-

tions are candidate solutions to the relaxed problem.

2. A(6) and A_; (d) should be both continuous and continuously differen-
tiable in an open neighbourhood of the point § = 0.

3. Expected lifetime utility averaged across all agents should remain constant
from the perspective of the initial time period for all values of ¢ in the
neighbourhood of 6 = 0.

Since we work under the assumption that incentive compatibility constraints
bind only ‘downwards’ in the relaxed problem, the first property is equivalent
to requiring that any additional incentive that an agent of type 6} may have
to mimic an agent of type 9?_1 (through changes in the allocation that the
latter agent receives) is offset by an equal increase in the utility that the agent
of type 0} receives from truthful reporting.'® Symmetrically, we impose that a
reduction in the incentives to mimic should be matched by an equal reduction
in the utility from truthful reporting — preserving continuity in the construction
at 6 = 0. This ensures that if the original allocation satisfied the constraint
set of the relaxed problem then the perturbed allocation must likewise. Hence
if the original allocation was a solution to the relaxed problem, the perturbed
allocation cannot deliver the same value to the policymaker at lower cost.

The second condition is required for the perturbations to be applied sym-
metrically. It is very similar to the requirement in consumer choice theory that
optimal consumption should be at an interior point in an agent’s budget set if
we are to assert that the price ratio will be equal to that agent’s marginal rate of
substitution between two goods (and that a unique marginal rate of substitution
should exist at the optimal point) — otherwise it may not be possible for the
consumer to exploit any wedge that exists between the two. This requirement
provides a substantial obstacle relative to the first: if we know that incentive
compatibility constraints bind downwards then we know it always going to be
possible to increase the utility of the highest type alone, or of the top n types in

16We use superscripts here to index the agents’ types within the set ©, with 67 increasing
inne{l,.., N}
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sufficiently skewed proportions, so that incentive compatibility constraints will
remain satisfied. This could be done simply by the provision of extra consump-
tion to higher-type agents. But perturbations of this form will only ever give
us inequality restrictions — to the effect that the net marginal cost of chang-
ing outcomes in such a manner must be weakly positive. Unless a symmetric
downward shift in the utility of high types is possible, with a converse impact
on the net cost of utility provision, this cannot be converted into a first-order
condition that is stated with equality.

As the third condition states, we assume that allocations are changed in just
such a way that the average value across agents of expected lifetime utility re-
mains constant from the perspective of the very first time period. Since we have
assumed a policymaker who is utilitarian, assessing outcomes from the perspec-
tive of the initial time period, this implies that in all cases the policymaker will
experience no direct loss or gain from the perturbation.

A necessary condition for the original allocations (¢f_;,y;_;) and X} to
have been optimal is, then, that the marginal effect on the resource cost of
utility provision associated with any admissible perturbation should be zero.
Otherwise it would be possible to change allocations in one direction or another
and raise a resource surplus, without changing the value of the policymaker’s
objective — contradicting optimality.

5.3 Deriving admissible perturbations: changes at the top

There is a very simple example of a perturbation that satisfies all three of
the above requirements: a movement along the within-period indifference curve
of the ‘top’ agent for any given reporting history. Since the famous work by
Mirrlees (1971) it has been well understood that the maxim ‘no distortion at
the top” applies in a static optimal income tax setup — in the sense that u. = —u,
for any agent whose productivity parameter takes the highest possible value in
the feasible set.!” This derives from the fact that no other agent envies the
allocation of the highest type in equilibrium — and thus there are no benefits in
moving away from a situation in which u. = —u,.'® The logic generalises to
the intertemporal model, as the following makes clear.

Proposition 2 No distortion at the top: In all time periods t > 1 and
(if t > 1) for all past reporting histories 0", the allocation (cf,y;) for the
agent who reports 0, such that 0, = max{0 € ©} satisfies u. (c},y;;0;) =

*Uy (Ct 9 yt 3 at) ‘

Proof. Consider a perturbation to the allocation X;* (Ht_l) given by the N x 2
matrix of functions A : R — R2Y such that the nth row of A (§) equals (0,0)

1"When this set has unbounded support the result need no longer hold, as the influential
work by Saez (2001) has emphasised.

18For all other agents, reducing consumption and output together along a given indifference
curve, to a point where u. > —uy, will reduce the utility ‘rent’ that must be provided to higher
types to deter mimicking — a consideration that justifies deviating from the usual productive
optimality condition in their case.
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for all n € {1,..., N — 1} and the Nth row equals (d, f (§)), with the function
f : R — R defined implicitly by:

u(ci +6,y7 + £(6):0,) =u(ct,yf:0) (15)

By construction this change keeps constant the (expected) utility of all truth-
telling agents in all time periods. It does affect the utility of agents who report
6, when not of type 6}, but this is irrelevant to the relaxed problem, and by
the initial supposition in the Proposition we know that any allocation that
continues to satisfy the relaxed constraint set cannot improve upon the solution
to the general problem. This then implies that the value of the policymaker’s
objective will remain unchanged as ¢§ is varied away from § = 0. The impact
of the perturbation on the resources available to the policymaker in period ¢
(in a truth-telling equilibrium) will be g (92|9t_1) To (Ot_l) [f(8) = ¢]. If the
original allocation is optimal then the marginal impact on resources as § moves
away from zero must be zero, or else it would be possible to raise a surplus.
Hence we have:

7o (046" me (01 [ (0) — 1] = 0 (16)
Probabilities are non-zero, so this implies:
f(o)=1 (17)

Since utility for a highest-type truth-teller is unchanged by the perturbation we
can assert the total derivative:

ue (¢, y7:05) +uy (cf,y7:05) f(0) =0 (18)

The result follows immediately. m

Notice that we have not had to assume anything about the type process
in stating this proposition, which applies for any process consistent with the
validity of the first-order approach. Graphically, the idea is that if the opti-
mum involves only downwards incentive compatibility constraints binding then
it must always be possible to move the allocation of the top agent at time ¢ (for
a given history) along that agent’s within-period indifference curve, without
jeopardising the incentives for any agent to report truthfully. This movement
is additionally reversible, and (under the assumption of utilitarianism) will pre-
serve the value of the policymaker’s objective. Hence if the original allocation
is optimal it must not raise surplus resources: the marginal cost of incentivising
a top agent to produce an extra unit of output must exactly equal that extra
unit.

The result is an interesting one in its own right, since Kocherlakota (2011)
has provided a computed example in which the optimal consumption-output
distortion for ‘top’ agents appears to be non-zero, conditional upon a particular
past report.'® Specifically, he obtains a non-zero ‘top’ rate in the second period
of a two-period (overlapping generations) model for agents whose type was not

19See Chapter 6 of Kocherlakota (2011).
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the highest in the first period. The reason for this derives from the particular
productivity process that he assumes. In the first period of his model, young
agents may be either type 0y (high type) of 01 (low type). In the second
period, those who were low types in the previous period may now be either type
010" or type 010", and those who were high types may be either type 067 or
type 0 0';. This implies that the highest type that an initially low-type agent
could possibly be in the second period, 1,67, is not the highest type across all
agents in the economy, which is instead 06%;. This in turn means that there
are conceivably agents who could mimic the second-period agent of type 01,0,
whilst having a productivity level in excess of 070%, as well as implying that
two agents who receive the ‘same’ (stochastic component to their) productivity
draw in the second period, 0%, do not have the same within-period preference
structure across consumption-output space.

By contrast, in the model used in this paper the highest within-period type
that an agent could possibly be is independent of history, and any two agents
who receive the same within-period productivity draw and have reported the
same history will make identical choices. Kocherlakota’s results are influenced
by the fact that changes to the second-period allocations of agents of type 61,0
affect the incentives for first-period truthful reporting for agents of initial type
0p (a point noted by the author). If we were to map from his setting to ours,
the appropriate specification of ©® would be a time-varying set: © = {0.,0y}
in the first period, and © = {HLQ’L,QLH/H,OH@’L,OHQ}{} in the second. It is
only agents of type 00} that we are claiming in this paper should see zero
marginal rates in the second period, since 6% is, in the relevant sense to us,
the maximal element in © in the second period. This result (together with zero
marginal rates for those of type 0y in the first period) is indeed reported by
Kocherlakota.

5.4 Uniform utility perturbations

The most common application of perturbation analysis in the dynamic optimal
tax literature to date has been in deriving the ‘inverse Euler condition’ in mod-
els with additive separability in utility between consumption and labour supply.
Deriving this condition relies on perturbing the consumption utility of certain
agents in two consecutive periods. In the second of these, the consumption util-
ity of all agents with a common prior report history is changed by a uniform
amount at the margin. Because preferences are separable, under this pertur-
bation agents will receive the same change to their within-period utility from
mimicking any other agent as they do from a truthful report: separability im-
plies consumption utility is type-independent. With non-separability we cannot
construct perturbations that change the utility of all agents by an equal amount,
no matter what their type. But we can appeal to the first-order approach, and
focus just on making sure that the constraints of the relaxed problem remain
satisfied. Then a natural generalisation of the inverse Euler condition to the
non-separable case can be achieved, again based on a perturbation to alloca-
tions in two consecutive periods — and again ensuring that the utility of all
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agents with a common prior report history is changed by a uniform amount in
the latter of these periods. When developing the analysis still further, we will
see that this uniform utility provision is a special case of more general utility
distributions that can be applied at the margin.

5.4.1 Definition of « function
Before presenting the main proposition of this sub-section, we must define the
function a (¢, y;0), with o : R% x © — R, as follows:

ue (¢,y30) = ue (¢, y36')
uy (¢,y;0') —uy (¢, y;0)

a(c,y;0) = (19)

provided 6 # max {5 € @}, where #' = min {5 €O:0> 0}. If 6 = max {5 € @}

we simply define a (c,y;6) = 0.2°

This « function is very useful in understanding the perturbation construc-
tions that follow. It gives the marginal increase in output (away from the level
y) that must accompany a unit marginal increase in consumption (away from
the level ¢) if the combined marginal perturbation is to have an equal impact
on utility for the agents of both types, 0 and 0" at the given allocation.?! More
specifically for our purposes, it shows how to provide utility at the margin along
a dimension in consumption-output space that will ensure both truth-tellers
(6-types) and would-be mimickers (€'-types) receive the same utility increment.

If consumption is additively separable in utility then @ = 0 always holds.
This is just a re-statement of the known result, used in deriving the standard
inverse Euler condition, that the marginal effect of consumption changes on
utility is completely independent of type under separability. In the general,
non-separable problem it is not possible to find composite perturbations that
have the same marginal effect on utility for all types in this way. But if it is
sufficient to study the relaxed problem then the effects of perturbations really
only matter to the extent that they change utility levels for two particular agents
in each case: those truthfully reporting the given type, and would-be mimickers
whose type is one higher. Moreover, it is always possible to ensure common
utility changes for these two agents alone, even in the event of non-separability
— and it proves useful to do so.

When consumption and labour supply are Edgeworth complements, so that
higher levels of the latter increase the marginal utility of the former and vice-
versa, we will have o > 0.22 That is, higher production must accompany higher

20Recall again that our focus at present is on the case in which © contains a finite number
of elements.

2IThe impact of such a perturbation on the utility of type 6 will be wuc(c,y;6) +
a(c,y;0) uy (c,y;0), and will be uc (c,y;0") + a(c,y;0") uy (c,y;0") for type 6. It is easy
to confirm that the two are equal.

22Formally, we take consumption and labour supply to be Edgeworth complements if and
only if u¢y > 0, and Edgeworth substitutes if and only if u.y < 0. Since these cross-partials
hold @ fixed, higher output is equivalent to higher labour supply. Note that equation (3)
further implies u.¢9 < 0 for Edgeworth complements and u.9 > 0 for Edgeworth substitutes.
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consumption if the marginal increase in utility is to be the same for both truth-
tellers and mimickers. This is because under complementarity the (truth-telling)
lower-type agents will receive a greater marginal benefit from a unit increase in
consumption at any given allocation than the (mimicking) higher-type agents —
because of the higher number of hours the lower types are working to produce
the given output level. To offset this disparity, one must exploit the higher
marginal disutility of additional output for lower types, by requiring that greater
production should accompany the increased consumption. Conversely, when
consumption and labour supply are Edgeworth substitutes we must have oo < 0.

5.4.2 A generalised inverse Euler condition

We now have the machinery to provide a generalisation of the inverse Euler con-
dition to the case of non-separable preferences. Quite aside from its theoretical
implications, this is of interest in its own right. On a simple analytical level,
it helps fill a widely-recognised gap in the existing theory. Golosov, Tsyvinski
and Werning (2006) have written that “Little is known about the solution of
the optimal problem when preferences are not separable [between consumption
and leisure],” before making use of numerical simulations to show that some
results (notably that savings ‘wedges’ should be positive) need not carry across
from the separable to the non-separable case. Similarly, Kocherlakota (2011)
has noted that “It would definitely be desirable to be able to construct optimal
tax systems in dynamic settings in which preferences are nonseparable between
consumption and labor inputs.” The following result, it is hoped, will allow this
to be achieved much more easily. The proof is slightly involved, but we choose
to keep it in the main text because the methods used are novel and will be
applied repeatedly throughout much of the subsequent analysis.

Proposition 3 Generalised inverse Euler condition: For all time periods
t > 1 and for all reporting histories 6, the allocations (c; (6%),y; (")) and
X;4 (0") satisfy the following condition:

1 —a(c,yf;0t)

R 1/6 * * * * * * 20
“ uc(ctyyﬁat)Jruy(ct;yt;et)a(ctvyt;et) ( )
l -« (C:Jrl: Yis1s 9t+1)
= Te (9t+1|9t) * * * * * *
0t+21;® Ue (Ct+1’ Yit1s 9t+1) Uy (Ct+1v Yit1s 9t+1) o (Ct+17 Yit1s 9t+1)

where cf, and y;,; are given by the relevant entries in X\ 4 (Ht),23

A full proof is given in the appendix. Heuristically, the important innova-
tion here is to provide a general expression for the marginal cost of incentive-
compatible utility provision from the perspective of the policymaker, and to
show the manner in which it is optimal to spread this cost through time. Chang-
ing consumption and output jointly at ¢ for the agent with report history #°

23We suppress dependence upon past type reports to keep the notation manageable.
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according to the vector (1, (cf,y;;0:)) increases the within-period utility of
that agent at the margin by wu. (¢}, y;;0:) +uy (¢f, yi;0¢) o (cf, yf; 0¢) units. By
construction, it would have the same impact on a mimicking agent with a com-
mon report history to ¢ — 1, but a type one higher at t. The t-dated cost of
providing utility in this manner at the margin for each agent with the given re-
port history is 1 — « (cf, y5; 0¢) (any extra output being a negative cost). Hence
the term on the left-hand side of (20) is the marginal cost for every S units of
t-dated utility provided, which is converted into ¢+ 1 resources at the prevailing
real interest rate. The term on the right-hand side is, by similar reasoning, the
marginal cost (assessed at t 4 1) of providing the agent with report history #°
with a guaranteed utility increment of one unit across types at time ¢ + 1 (and
hence a discounted /3 units guaranteed from the perspective of ¢). Again, these
marginal costs are obtained under the assumption that increments to a given
t + 1 type’s utility must provide identical increases to the utility of mimicking
agents.

Why do these marginal perturbations preserve incentive compatibility (at
least for the relaxed problem)? Consider period ¢+ 1 first: we know that for any
given agent the important consideration is whether the benefits to mimicking
a type one lower have changed relative to the benefits from truthful reporting.
This cannot be the case, since agents receive a common marginal utility incre-
ment of one unit in that time period whether they opt to be truth-tellers or
‘downwards’ mimickers. If truthful reporting was (weakly) optimal initially it
must, therefore, remain so. This is the importance of assuming that output
changes in accordance with the « function alongside any changes to consump-
tion.

Meanwhile at time ¢ the agent whose current type is indeed 6; would see
exactly offsetting changes to the present value of truth-telling were current util-
ity to be increased (reduced) by an amount § at the margin and future utlity
reduced (increased) across all future types by a unit at the margin. With no
changes to the allocations to agents with alternative t-dated reports, this agent
would have no reason not to continue reporting truthfully. But again, by con-
struction we have ensured that the same (S-unit) marginal change to t-dated
utility is engineered for the relevant mimicker (of type one higher than ;). And
since a unit of utility is gained for all types at t+ 1 at the margin, this mimicker
will likewise witness no change in the benefits to mimicking type 6;. Hence in-
centive compatibility is preserved for any perturbation that increases (reduces)
utility by 8 units at ¢ and reduces (increases) it by one unit at ¢ + 1 for agents
with the given reporting history. Since this perturbation is having no impact
on lifetime utility for any agent from the perspective of period t and earlier, it
must also be having no impact on the policymaker’s objective function — so a
necessary condition for optimality is that it cannot generate a surplus in net
present value. This is what condition (20) is expressing.

Note that, like the ‘no distortion at the top’ condition, this result applies for
general type processes — so long as the first-order approach remains valid.

The marginal cost term that features in (20) will appear repeatedly in the
analysis that follows. To avoid repeatedly writing out a relatively unwieldy
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object, we refer to it as MC (c,y; 0):

1 —al(ey;)
ue (¢, y;0) +uy (¢, y;0) a(c,y; 0)

MC (e,y;0) = (21)

5.4.3 Implications for optimal savings wedges

This generalised inverse Euler condition provides useful theoretical insight, but
our main aim is to exploit it to make qualitative statements about the character
of optimal tax distortions. The obvious area to turn to is optimal savings
wedges — that is, how the policymaker might wish to drive a wedge between
agents’ intertemporal marginal rates of substituion and the real interest rate.
The first point to note here is that (20) provides qualified analytical support to
the numerical result of Golosov, Tsyvinski and Werning (2006) that the optimal
savings wedge to insert in the consumption Euler equation could be negative for
some agents, at least in the weak sense that under some preference structures
we cannot analytically rule out the inequality:

ue (ci,yr30t) > BRita Z 76 (014110") e (i1, Y1 0141) (22)
0t11€0

holding in certain time periods for certain realisations of #°°. This would suggest
tax instruments are being used to hold consumption at ¢ below the level that
would obtain in the event that the consumer could save freely at the gross real
interest rate R;y1, given the distribution of consumption across states in ¢ + 1;
this can be interpreted as a marginal subsidy to savings. To understand why
(22) may apply, it is worth recalling exactly why the optimal savings wedge is
positive under separability.

Taking the mathematical treatment first, by Jensen’s inequality we know
that:

1
Z 7o (0141]0") [ ] > Z 76 (014110°) ue (€1, Yigr; Ort)

0:11€0 Ue (Cr'i‘l’ yz""'l; 9t+1) 0:11€0

(23)
with a strict inequality holding so long as the marginal utility of consumption
varies in 0;41 (which will be true in all models of interest). From this a sim-
ple rearrangement of (20) in the case of separable preferences (« (c,y;0) = 0)
confirms that savings are indeed deterred:?*

ue (i, y730t) < BRiga Z To (0r41]0%) te (1, Uia; Oren) (24)
0¢t11€0

(again, with a strict inequality holding so long as the marginal utility of con-
sumption varies in 6;41).

248ee, for instance, Golosov, Kocherlakota and Tsyvinski (2003) for a fuller treatment of
the separable utility case.
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The economic reason why the usual Euler condition (with an equality in the
above relationship) does not hold in this environment derives from the linked
problems of missing markets and over-insurance. Because each agent’s produc-
tivity draw in each period is unobservable — and hence reports of it unverifiable
— the idiosyncratic risk associated with future draws cannot be insured against.
Absent any market intervention, the only way for individuals to prevent them-
selves from experiencing very low consumption in the event that they are un-
lucky in the future is to engage in private saving — their concerns dominated
by future states of the world in which they are unlucky. This means all indi-
viduals in the economy are ‘saving for a rainy day’ simultaneously, even though
it is (almost surely) impossible for them all to experience low productivity lev-
els simultaneously. Fz-post there will be a sizeable measure of individuals who
were not unlucky, and thus who have a large quantity of accumulated savings
that they would not have chosen to hold, had they been able access complete
insurance markets. This excess stock of savings reduces the marginal benefits to
these individuals from working, since the consumption returns from doing so are
not that valuable to them. Thus over time more productive agents are content
to put in less and less effort — an outcome that is not constrained efficient.?’
The policymaker prefers to rein in savings at the margin, making it easier to
provide future production incentives for higher types.

A more direct way to understand the same result is simply to consider why
the consumption Euler equation is not a necessary optimality condition for the
policymaker’s problem. The Euler condition states that spreading resources
through time, with equal consumption increments across states at ¢t + 1, cannot
raise utility. But this is not a choice open to our policymaker — who instead must
ensure that spreading wtility through time, with equal utility increments across
states at t + 1 (provided in a manner consistent with equal gains for truth-
tellers and ‘downwards’ mimickers) cannot raise surplus resources. Providing
equal consumption increments across states at ¢t + 1 would generally provide
greater marginal utility to those whose initial consumption was lower, raising
the benefits to higher types from mimicking them. In the separable case the mar-
ginal cost of utility provision in a manner that preserves incentive compatibility
is the inverse of the marginal utility of consumption: only when consumption is
provided differentially across states at t+1 in proportions according to this mar-
ginal cost can incentive compatibility be preserved. In the more general case this
marginal cost is the expression contained in equation (20), with utility changes
effected through a combination of consumption and output perturbations.

Perhaps slightly disappointingly, it turns out that a simple re-statement
of inequality (24) in the non-separable case is only possible in very particular
circumstances. Fortunately there is a natural generalisation of the ‘deterred
savings’ inequality that will apply more widely; but first we present the results
that we can state regarding this standard consumption Euler condition.

25 There are clear parallels here with the general intuition provided by Greenwald and Stiglitz
(1986) for missing markets and/or informational asymmetries implying a scope for Pareto-
improving policy interventions (relative to market outcomes).
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Proposition 4 Deterred savings (1): Suppose that in all time periods s > 1

and for all reporting histories 0° the allocations (% (0%) ,y* (0°)) imply u. (X, y%;05) >
uy (¢5,y%:0s). Then for all time periods t > 1 and for all reporting histories o,

the allocations (ci (0%) ,y; (6")) and X7, (0") will satisfy inequality (24) if one

of the following conditions holds:

1. Preferences are additively separable between consumption and labour sup-
ply.

2. Consumption and labour supply are Edgeworth substitutes, and 8; = max {0 € ©}.

We show subsequently that the assumption u. (¢}, ys;0s) > uy (i, yi;05) is
indeed satisfied at any optimum: it is an immediate corollary of Proposition 7
below.

Thus we have a result that when consumption and labour supply are substi-
tutes there will always be a positive savings wedge imposed on the highest-type
agent, in the sense implied by inequality (24). Beyond this, though, it is hard
to say much of specific relevance to the consumption Fuler condition. But this
condition isn’t the only way to characterise a dynamically optimal decision in
an economy free from government intervention. For instance, optimality under
autarky also requires that a consumer cannot produce an extra unit of output
at time t, save it, produce R;;1 units fewer at t+1, and increase the net present
value of his or her utility by doing so. This consideration implies an alternative
intertemporal optimality condition expressed in terms of an individual’s output:

uy (0¢) = BRi+1 Z 76 (0r4110") uy (0141) (25)

0:11€0

More significantly for our purposes, any combination of a reduction in con-
sumption and increase in output at ¢, coupled with any distribution (in each
state of the world) of the saved proceeds at t + 1 between extra consumption
and reduced output is possible, and similarly must not increase utility at an
optimum under autarky (for resource movements towards either period). In
particular, in a world with no taxation the following optimality condition must
hold:

uc (01) + uy (0¢) a (0)

= o (0)) (26)
e (Oer1) +uy (0i11) @ (0i41)
_ R ) gt e (0141 y (Uit +
ﬁ t+1 etgeeﬂ-e( t+1| ) 1*0[(9t+1)

The numerator in the object %W is the marginal effect on the
agent’s utility at the given allocation of a unit increase in consumption, coupled
with an increase in output of a (6;) units. The denominator is the net cost to
the agent of this change, under the maintained autarky assumption that all of
the « () units of extra output are retained by the agent; the entire fraction

then gives the marginal effect on utility per unit cost. The condition is just
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stating that no set of joint combinations of consumption and output changes
can be used to spread resources through time and raise a surplus for the agent.
So an agent’s intertemporal (‘savings’) decisions are implicitly being distorted
whenever equation (26) does not hold, with saving being discouraged whenever
the left-hand side is less than the right.

Any such dynamic distortion may well interact with concurrent distortions
at the labour-consumption margin within a period, but the main point here
is that there is nothing inherently correct about focusing exclusively on devia-
tions from the traditional consumption Euler equation in assessing the extent
of savings distortions. Any equation that states that the marginal rate of sub-
stitution between a given pair of composite output-consumption bundles in two
consecutive periods must equal their relative price ratio (in this case Rit1), as
equation (26) does, is of equal validity to the consumption Euler equation in
characterising optimal dynamic behaviour under autarky.

The useful feature of equation (26) is that we can say something far more
general about deviations from this expression at the optimum than we can
about deviations from an Euler equation stated in terms of consumption alone.
Specifically, we have the following.

Proposition 5 Deterred savings (2): For all time periods t > 1 and for all
reporting histories 0", if consumption and labour supply are either Edgeworth
substitutes or additively separable in preferences then savings will be deterred at
the optimum, in the sense that the allocations (c,’{ (Ht) Ui (Gt)) and X, (Ht)
will satisfy the following condition:

uc (0¢) + uy (6¢) a (01)

e (Or41) +uy (Or41) @ (0r41)
< BR T 0 at u ( t+1 y
o etge@ o 0enlf’) 1—a(f1)

we(Orp1)tuy (Orp1)o(0ign)
1—a(0i41)

with the inequality holding strictly so long as the object
varies for different draws of ;41 € ©.

Proof. If consumption and labour supply are substitutes then « (6;) < 0, so
for the preferences we are focusing on we must always have:

e (0¢) + uy (0¢) a (0:)
l1—« (Qt)

>0 (28)

(recalling that u, < 0). Thus by Jensen’s inequality we have the following:

oy | ue (04 + Uy (0p41) a (0;
etéeﬂ@ (0t+1|9)|: : H)laget:)) ez (29)

-1

> Z T (0t+1|9t) Ue (9t+1)+uy (9t+1)a(9t+1)

0:41€0 l1-a (9t+1)
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with a strict inequality provided “C(et“)lt “;((g:rll))awt“) varies for different draws

of 0;11. The left-hand side of (29) is also the right-hand side of equation (20);
the inequality in the Proposition then follows straightforwardly from using (20)
in (29). m

Note that this result has been stated irrespective of the manner and extent
to which income is being taxed within periods t and t + 1: unlike the prior
Proposition we do not need any assumption that tax wedges are weakly positive
for savings to be deterred in the given sense.

More significantly, note that we are not able to state the result for the case
of Edgeworth complements: in that case we cannot rule out the possibility that
uc(et“)ltu;((g:ll))a(e‘“) < 0 may hold at the optimum for some values of 0,1,
preventing us from applying Jensen’s inequality. As it happens, Proposition 5
below implies uc(0“1)ltu;((g:ll))a(e‘“) > 0 will also hold at the optimum under
complements provided types additionally follow an iid process for all agents; but
this relies on arguments that we have yet to establish.

In economic terms, the result suggests the problem of over-saving in the ab-
sence of perfect insurance markets carries over directly to the case of substitutes.
But we cannot be confident that savings will be being deterred at the margin
if the marginal cost of incentive-compatible utility provision could turn negative.
Though that possibility may at first appear unlikely, we show in a computed
example below that it can indeed obtain under Markov shock processes and
complementarity. The problem in this event is that, starting from the equilib-
rium allocation, an undistorted decision by agents to ‘save’ at the margin (as we
have defined it) involves increasing their ¢t + 1 utility across all states through a
uniform change in the quantity of resources at their disposal in that period, with
these resources distributed between consumption and output in proportions cor-
responding to the relevant « (6;11) terms. But it is possible that utility may be
increased on average across t + 1 states in this manner even when the uniform
quantity of resources to be allocated is negative. This could happen whenever
the optimum allows some agents to increase their utility despite increasing their
production at the margin by more than their consumption — a possibility if there
are large enough equilibrium distortions at the labour supply-consumption mar-
gin. In this case extra ‘savings’ — in the sense of incremental wtility deferral —
in fact correspond to a lower stock of resources being deferred. It would not be
surprising if in this case the standard intuition relating to over-insurance did
not apply.

This argument does highlight clearly the importance of distinguishing be-
tween marginal and average distortions. All we have said is that at the optimum
under complementarity individuals could conceivably defer utility through con-
stant marginal resource changes across future states, and pay a negative cost
for doing so. But plainly this would never be a feature of the equilibrium allo-
cation under autarky, which must always involve u. + u, = 0 for all agents in
all periods — making it impossible for utility to increase at the margin along a
vector that sees output rise by more than consumption. Knowing whether the
total quantity of resources saved at the utilitarian optimum is less than the total
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quantity that would be saved under an autarkic equilibrium is as important as
knowing whether the optimum is characterised by additional marginal savings
being discouraged — but it is only the latter on which we have been able to shed
light.

Moving away from its implications for marginal tax wedges, it will also be
interesting to consider what Proposition 3 implies for the ‘immiseration’-type
results that emerge in the special case that R, = 8~ for all ¢. In that case
equation (20) is a martingale, to which martingale convergence results may be
applicable if bounds can be placed upon it. Under separable preferences the
relevant martingale is in the inverse of the marginal utility of consumption,
which is bounded below at zero under usual Inada conditions. It is well known
(see, for instance, Farhi and Werning (2007)) that this implies almost all agents
will see their marginal utility of consumption converge to the lower bound along
an optimal path — and thus that consumption tends to zero for almost all agents.
This ‘immiseration’ was first demonstrated as a potential property of optimal
allocations under asymmetric information in a moral hazard context by Thomas
and Worrall (1990), and it will turn out to generalise fairly robustly to the non-
separable case — with important qualifications. But unfortunately the proofs rely
on other arguments that are still to be established, so we defer a full treatment
of this important area until later in the paper.

5.5 General intratemporal perturbations: the case of iid
types
5.5.1 Heuristic overview

We have shown above how it is possible to choose two particular pairs of A (¢)
and A_j (d) schedules, in each case satisfying the three requirements of local
incentive compatibility preservation, continuity, and zero impact on the pol-
icymaker’s objective. The first was obtained by arguing that movements in
either direction along the within-period indifference curve of the highest-type
agent are always incentive-compatible (under the relaxed problem) and feasible.
These perturbations will have zero impact on the within-period utility of all
agents in the period that the A (§) schedule is appled (and in all other periods).
The second was obtained by arguing we could reduce (increase) the utility of
an agent with a given history to time ¢ by 8¢ units according to A_; (J), and
increase (reduce) utility by § units for all realisations of the productivity para-
meter at ¢ + 1 according to the matrix A (d) — in both cases in a manner that
is incentive-compatible under the relaxed problem, and feasible. In both cases
the results were quite general, in that they were derived without making any
specific assumptions about the distribution of agent types through time.

This sub-section shows how to construct an additional set of NV —1 ‘intratem-
poral’ perturbations that can be applied in the iid case — changing within-period
outcomes across agents with a common prior reporting history, but leaving al-
locations in all other time periods unaffected. The optimality conditions asso-
ciated with these perturbations will be enough to close the model, in the sense
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that they provide as many restrictions as there degrees of freedom left to the
policymaker. Because they are conditions that must apply irrespective of the
dynamic setting of the model, they also provide novel insight into the ‘static’
optimal income tax model, of the type originally set out in Mirrlees (1971).
The intuition that we exploit is the following. Suppose one wished to perturb
the within-period wutility levels at time ¢ of all (truthful) agents with prior re-

porting history /H\t 1, in proportions corresponding to the elements of some N x 1
vector v — that is, increasing the utility of type 9% by an amount 14, of type
9,52 by an amount 6, and so on, for some common scalar §. If one is to remain
within the constraint set of the relaxed problem, these perturbations must be en-
gineered in such a way that the change in utility received by the (truth-telling)
nth agent is equal to the change in the utility that this agent could obtain
by mimicking those of type 0?71. This in turn can be ensured by delivering
the perturbation to 9?_1’8 utility along an appropriately-chosen dimension in
consumption-output space, exploiting the fact that along all dimensions apart
from those highlighted in presenting our generalised inverse Euler condition,
utility changes to mimickers differ from utility changes to truth-tellers.
Collectively these utility changes at ¢ could potentially affect incentive com-

patibility at ¢t — 1 — that is, the incentives to report @t 1. This will be the case
whenever they increase or decrease the expected value of within-period utility
across types at t. To prevent this we make sure that the perturbations at ¢ are
constructed so as not change within-period utility at all in expectation. This
prevents any need to perturb prior allocations, and thus keeps the focus re-
stricted to a single time period — yielding ‘intratemporal’ optimality conditions
as required. Note that the iid assumption will ensure that both truth-tellers
and (one-higher) mimickers at ¢ — 1 experience the same ex-ante change to their

expected within-period utility from reporting /O\t 1, even though the proposed
perturbation has differential effects across types at ¢.2

Figure 3 illustrates diagramatically the type of construction we have in mind.
Suppose that under the chosen v vector v,, = 0 and v,, 41 = 1. This means that
for any given ¢ we wish to increase the within-period utility of the n+ 1th agent
by an amount §, but leave unchanged the utility of the nth. The latter will be
ensured only if the allocation to the nth agent is perturbed along that agent’s
within-period indifference curve. To preserve (exact) incentive compatibility for
the n 4 1th agent, this movement must deliver § units of extra utility to that
agent when mimicking. The perturbation to the n + 1th agent’s allocation will
likewise increase that agent’s truth-telling utility by an amound §, and should
be chosen based on the required increment to mimicking agents of type 6™ *!
(omitted from the diagram).

Since we are free to select in this way any utility increment vector v whose
expected value across types is zero ex ante, the associated class of perturbations
is potentially very large.

26Under more general type distributions this will not be true, since the probability distrib-
ution across future states will differ between mimickers and truth-tellers at ¢ — 1.
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Figure 3: Engineering incentive-compatible utility changes

5.5.2 Analytical treatment

We now present the arguments more formally. It is useful first to define the
function 7 : Ri x©® — R by 7(c,y,0) =1+ % This is the implicit
within-period marginal income tax rate faced by an agent of type 6 receiving

an allocation (¢, y) — which is seen by noting:

Ue (Cv Y, 9) (1 -T (Cv Y, 9)) = —Uy (Cv Y, 9) (30)

Or, in words, the marginal utility of consumption multiplied by the real dispos-
able income that an agent receives per unit of extra output that they produce
is equal to the marginal disutility of production. By defining 7 in this way we
are not implying that a non-linear marginal income tax should necessarily form
part of any ultimate decentralisation scheme, but it is useful to deploy a variable
with a clear practical interpretation.

A first step towards obtaining the general optimality conditions we are after
is the following Lemma, the proof of which is in the appendix:

Lemma 1 Suppose that type draws are iid across agents and time. Fiz a vector
v € RN (whose nth element is denoted v,,) such that:

N
S 6 (07) v = 0

n=1
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~t—1

For all time periods t > 1 and any prior reporting history 0 € ot gt
~t

is possible to perturb the set of optimal allocations X/ (9 ) i a manner that

will preserve the incentive-compatibility constraints of the relaxed problem in
all periods whilst raising the within-period utility of an agent of type 07 by an
amount v,0 in period t, for any scalar § satisfying |d| < & for some € > 0.

This confirms that any incremental vector that delivers zero expected utility
across types from the perspective of previous time periods can be engineered
through changes to within-period allocations alone, without affecting incentive
compatibility constraints at any horizon. The proof is just a formal statement
of the intuition developed graphically in the previous time period.

What really matters if we want to say something about optimality, though,
is the impact that perturbations of this kind have on resources at the margin as
the scalar § is moved away from zero. If we start at an optimum, this marginal
cost must itself be zero. It turns out that an important object when assessing
the overall marginal resource cost of any perturbation is the specific marginal
cost to the policymaker of a movement along the nth agent’s utility curve, by an
amount just sufficient to reduce by one unit the utility that could be obtained by
the n+1th agent when mimicking the nth. In terms of the graphical analysis just
presented, this is a ‘downwards’ movement along the lower type’s indifference
curve. This cost can be interpreted as the marginal cost of inducing additional
productive distortions into the economy, in order to reduce the mimicking rents
that are obtainable by higher-type agents. We label it DC (¢, y, 0):

0) = 7 (¢,y;0)
beley:6) = uc (¢,y;6") (1 =7 (¢,4;0)) +uy (c,y;60") (31

where @ =min{0c©:0> 042728

The object in the numerator here is the effective marginal tax rate levied on
the agent of type 0, which is what the policymaker foregoes for every unit by
which the production of that agent is reduced. The object in the denominator is
the number of units by which the utility of mimicking types is changed for every
unit increase in production for those reporting 6, given that the perturbation
takes place along the indifference curve of type 6, whose slope is equal to (1 — 7).
Its inverse is thus the number of units by which production must be reduced in
order to reduce minicking utility by one unit.

Note that the single crossing condition implies the denominator is always
positive here. Thus higher values for DC (¢, y; ) correspond to higher effective
marginal tax rates on agents of type . For this reason, the best interpretation

271f 0 is the maximal element in © we can arbitrarily define uc (¢, y;0') = 1 and uy (¢, y;0') =
0 irrespective of ¢ and y. This is for completeness only: we already know that there will be
no distortion at the top, in the sense that 7 (¢, y;0) = 0, in this case. It therefore makes sense
to fix DC (c,y; 0) to zero too.

28'We will sometimes use the shorthand w (b\n, 0"*1) to denote the utility of an agent whose

true type is 0”1 but who reports a type one lower.
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of DC (¢, y;0) is as an efficiency cost of distorting outcomes. The larger it is, the
greater are the deviations from full productive efficiency that the policymaker is
willing to tolerate — presumably because these distortions are necessary in order
to engineer greater equality across types. Indeed, based on this interpretation
we are able to show below that there is a remarkably direct ‘efficiency-equity
trade-off’ at the heart of this class of models.

A full consideration of the marginal resource costs associated with general
within-period changes in utilities yields the following, the proof of which is in
the appendix:

Proposition 6 Intratemporal optimality (iid case): Suppose type draws
are tid across agents and time. Then for all time periods t > 1 and all report-

~t ~t
ing histories 0 , the optimal allocation matriz X}, (9 ) satisfies the following

condition:
Z me (07) (Vnt1 —vn) DC (0}) = Z To (07) vn MC (07) (32)
0 e0\6N omeO

where v, is the nth element of any vector v that satisfies:

N
Z 7o (0") vy, =0

n=1

The most useful insights from this condition come when one makes specific
choices for the v vector. Perhaps the most obvious is to limit the (v,,41 — vp)
term to be zero for all n except one. To this end, suppose we pick some m €
{1,..,N —1} and let v,, = —1 for all n < m and v,, = [re (0 > ™)' =1 for
all n > m. By construction the ex-ante expected value of v, is zero, and we
can state the following corollary:

Corollary 2 Suppose type draws are iid across agents and time. Then for all

~t

time periods t > 1 and all reporting histories 6 , the optimal allocation matriz
~t

X (9 ) satisfies the following condition:

7o (01")

7o (0, > 07) Q?L)DC (0") = E[MC (0:) 10, > 0;"] — E[MC (04)] (33)

FE here is the standard expectations operator, being taken under the unique
within-period distribution across types, given by mg. Expressed in this way,
we have a relationship between the expected marginal cost of utility provision
across all types at t (the second term on the right-hand side), and the expected
marginal cost conditional upon type being higher than 6;" (the first term on
the right-hand side). The condition states that the higher is the gap between
these two expected marginal costs, the more willing the policymaker should be
to distort the productive activity of an agent of type 0;'. Recall that in general
a utilitarian policymaker would like to redistribute utility to those for whom
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the cost of providing it is lower. Indeed, at an optimal allocation the marginal
cost of utility provision would be equalised across all agents. When types are
unobservable the cost of providing utility is instead lower for those whose types
are relatively low, as a by-product of the need to incentivise higher-type agents.
If one were to reduce the utility of higher-type agents any further, this could be
done only by distorting (further) the productive activities of those whose types
are lower — engineering a movement along their within-period indifference curve,
in terms of the graphical analysis, and thus reducing the rents from mimicking.
The higher the relative marginal cost of utility provision for high types, the
greater the productive distortion the policymaker will be willing to tolerate.
This is what (33) is capturing.
Recall that DC (67") is given by:

- (07)
we (075 0°1) (L= 0)) + g (8,750

DC (07") (34)

So when DC (67") is higher, the effective labour income tax rate on the mth
individual is higher too. This highlights an important intuitive point, often
missed in popular discussions of optimal tax rates: higher marginal rates on
lower-type agents are the means by which the incomes of those higher up in the
distribution are pulled down. If the right-hand side of (33) is higher, a higher
value of 7 (0}") can be justified, precisely because it will do more to reduce the
gap between the conditional and unconditional expectations of M C (6;). What
matters for an individual’s welfare is not the marginal rate at which they are able
to transform leisure into consumption, but the total quantities of these goods
that they are able to enjoy. If higher marginal rates on agents of type 0;" simply
serve to raise additional resources from those higher up in the distribution, and
these resources are then used to raise the living standards of all types, then
they are evidently in the best interests of 6] types. The greater the measure of
individuals whose type is higher than 6", the greater will be the benefits from
increasing the tax rate on 67" in order to reduce the rents of those higher up.
This is captured by the mg (6; > 6}") term in the denominator of the fration on
the left-hand side.

All of these arguments are essentially familiar from the analysis of static
optimal income tax models (see, in particular, Roberts (2000) and Saez (2001))
— though our focus on the marginal cost of utility provision is an innovation on
that literature, and allows for a much simpler presentation of the the necessary
optimality condition.?? Though these static models tend to assume a contin-
uous type distribution, we show in a companion paper that the limit of (33)
as types become arbitrarily close to one another is a necessary intratemporal
optimality condition when the first-order approach is valid in that setting too
(again under the.assumption of iid types) — see Brendon (2011). For this reason

29Gince (33) is derived by considering perturbations that preserve incentive compatibility
within a single time period, it is equally necessary for optimality when the number of time
periods is limited to just one.
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the arguments in the current paper are equally useful in clarifying the analysis
and implementation of static optimal income tax problems as of dynamic ones.

5.5.3 Example with log consumption

A particularly clear version of condition (33) arises when utility is separable,
and depends on the log of consumption:

0) — AN EAN
u(ey;0) =mn(e) - 7 (5) (35)
k and 1 are parameters, with ¢ — 1 the inverse of the Frisch elasticity of labour
supply, and we let 6§ implicitly be the log of the marginal product of labour to
aid later arguments.Then DC (6}") is given by:
em
DC (6) = AU — (36)
ry (07)7 7 [emvor — emvor™]

and MC (0]") is simply equal to c¢(6;"). Although we have established the
arguments here under an assumption that © is a discrete set, the most compact
statements result when we let types become arbitrarily close to one another —
justified on the grounds that a companion paper confirms the validity of the
method when © is an interval of R. We then have:

. - oy T(OF)
i, P Y DOW] = po OF) —opigir g (37)
P (/4 IR A )
- p@(et )1_7_(0?1) ¥

where we define pg (6}") as the standard density function associated with g in
the continuous-type case. (33) is then:3°

T(0") c(6y")  pe (6;")
1—7(0]") ¥ me (0 >07")

So tax rates should be higher the greater is the difference between the expected
level of consumption above 63" and its population mean, but lower the higher is
the elasticity of labour supply, the hazard rate (#“ﬁ%), or the consumption
level of the agent of type 6;". Again, the role of marginal taxes in mitigating
the costs that the policymaker attaches to inequality are clearly seen here. The
dependence of optimal tax rates on the hazard rate and labour supply elasticity
are again both well known from the static case,>! but have not previously been

collected in so compact a statement.

= E[c(0:)0: > 0] — E[c(6:)] (38)

30We have used the definition of the labour tax wedge here:

(L) L

o7 o7 (0

31Saez (2001) places particular emphasis on the role of the hazard rate in influencing optimal
rates at the top of the income distribution.
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5.5.4 Discussion: A complete characterisation

There will, in general, exist NV — 1 linearly independent v vectors satisfying
the requirements of Proposition 6. Corollary 2 gives the N — 1 possibilities for
which v, = —1 for n < m, and v,, = [re (6; > 67")] " — 1 for n > m, for each
m € {1,...,N — 1} and any ¢ > 1. When we move to the non-iid case the set of
admissible v vectors is reduced in an important way, and the simpler optimality
condition stated in the Corollary will no longer go through. But for v vectors
that do remain admissible, (32) will continue to apply even in that more general
setting. This is the chief advantage in stating it in its general form.

Note that in addition to these N — 1 (linearly distinct) conditions there will
always exist an Nth ‘intratemporal’ requirement: the ‘no distortion at the top’
result. Further, for all time periods after the first, the generalised inverse Euler
condition, (26), provides a further cross-restriction, linking outcomes for agents
with a given prior history to their common allocation in the previous period.
There are additionally N — 1 binding incentive compatibility constraints across
any N agents who share a common prior history: one for each adjacent pair
of types. Finally, there is a single intertemporal budget constraint that the
policymaker must satisy (which may be thought of loosely as ‘substituting’ for
the dynamic Euler condition in the very first time period). Together these
restrictions ensure that we always have precisely 2N equations to tie down the
2N variables that are to be determined across any set of agents with a common
prior history at any given point in time. In this sense we have provided a
complete analytical description of the solution. This is likely to be of great use
practically, since it obviates the need to apply dynamic programming techniques
in arriving at a numerical solution to any given example. In a finite-horizon
model, all that is needed is to solve a known set of simultaneous equations,
although in general the number of equations will grow exponentially in the
number of time periods.??

In an infinite-horizon model one will still need a way to approximate agents’
value functions conditional on any shock history (since these feature in the
binding incentive compatibility constraint). But note that in the iid case history
dependence can be summarised by a single variable: the marginal cost of uniform
incentive-compatible utility provision. This follows from the fact that we can
solve for outcomes from period ¢t onwards for agents with a given type history
0""! based on a set of optimality conditions and constraints that all depend
only on outcomes from ¢ onwards, plus the generalised inverse Euler condition
applied between ¢t —1 and ¢. The object MC (0;_1) must, therefore, be sufficient
to summarise the past completely.

5.5.5 An ‘efficiency-equity trade-off’

There is one final simple and insightful expression can be obtained from Propo-
sition 6 alone. To illustrate it, and without loss of generality, it helps to suppose

32For T periods there will generally be 23:1 2Nt variables to determine: a consumption
and output allocation for agents with each history at each point in time.
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that the N elements of © C R are evenly spaced, so that 0" — ™ = ¢ for all
n € {1,...,N — 1} and some ¢ > 0.3 Then suppose that we wish to implement
some utility perturbation vector v whose nth element takes the form:

vp==20"= " 7o (6M) 60" (39)

€
0meO

This clearly satisfies D yn g 7o (0") vy, = 0, so it provides an admissible vector
by which we can augment utilities within a time period at the margin, under
the maintained iid assumption.

For the specified v vector, condition (32) becomes:3*

- E[DC (0;)] = Cov (0;, MC (6;)) (40)

where the expectations and covariance operators are taken under the unique
distribution wg, across types with a common shock history prior to ¢.

This is a remarkably clear statement of the ‘efficiency-equity trade-off’ that
is so often at the heart of optimal choice in public economics. Neglecting the
normalisation factor €,%® the term on the left-hand side gives the average value of
the marginal resource cost the policymaker is willing to endure in order to hold
down the utility rents that are enjoyed by high-type agents. This cost manifests
itself, as we have seen, as a within-period restriction on the productive efficiency
of lower-type agents, via a strictly positive within-period effective income tax
wedge. Higher values for DC (6}) imply higher productive distortions. The
term on the right-hand side tracks the degree of cross-sectional inequality in
the economy. The marginal cost of providing utility to type 6} in an incentive-
compatible way is increasing in type: it is more costly to improve the lot of
those who are already doing well. The associated covariance between 6} and
MC (0}) will be greater the greater is the degree of inequality in welfare across
07 draws. So the overall expression (40) simply states that policymakers should
be willing to tolerate inequality only to the extent that the resource costs of
doing so are not too great.

33To see that this is without loss of generality, note that we could always define © as the
integers {1,..., N}, and the mapping 6 : © — © by 0 (n) = 0", where 0" is the nth entry in
© as usual. Then all of the foregoing analysis could be carried out for the utility function
u:Ry xRy x © — R defined by u (¢, y;n) = u(c,y; 0™).

34We use the ‘no distortion at the top’ result here, implying that DC (0,{\]) =0.

35This features because DC (™) is the marginal cost of reducing by one unit the within-
period utility an agent of type 6?11 can obtain by mimicking ™, holding constant the utility
of truth-tellers. In general the further apart 8™ and 6”1 become the lower this cost becomes:
as the types become more distinct from one another it is easier to engineer distinct utility
changes for them. e effectively corrects for this effect.

Note that since ue (07) (1 — 7 (07)) + uy (07) = 0 we have:

7 (0%)

e-DC (0?) - uc(@?ﬂ:ﬁrl)*“cw?)

€

uy (07077 ) —uy (07)
[

(1—7(67)) +

So the left-hand side of (40) will remain well-defined as types become arbitrarily close to one
another, the objects in the denominator here approaching the cross-partials ucg and uyg.
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To make matters still more concrete, suppose we were again to assume the
simple specification for the utility function given by (35). Letting ¢ — 0 to
approximate the continuous-type case,*® (40) then becomes:

rO7) c6p)
b [1 6 ¢

The term on the right-hand side in (41) is now a more or less direct measure
of (consumption) inequality across types with a shared history, whilst the term
on the left-hand side is a simple interaction between the tax rate, consumption
level and Frisch elasticity of labour supply.?” Unsurprisingly, higher taxes in
general should be tolerated the greater is inequality, and for any given level of
inequality taxes should be higher the less elastic is labour supply (i.e., the higher
is ¢). The consumption term on the left-hand side captures the fact that those
who are more prosperous on the whole find working relatively easy, and so the
resources lost by deterring their production through higher marginal taxes are
relatively substantial.

Moreover, since condition (40) would have to hold at the optimum for any
static income tax problem, it provides an obvious simple restriction for testing
the extent to which different tax systems in existence around the world are
over-emphasising efficiency or equity considerations relative to the first-best
(utilitarian) optimum. This demonstrates the basic point that even if one does
not accept the normative case for the complex dynamic dependencies allowed
in the full model of this paper, there remain positive payoffs to our perturbation
approach.

} — Clov (6}, (07)) (41)

5.5.6 Optimal effective income tax rates

The results of the earlier analysis also allow us to demonstrate a further quite
general result with important economic implications, requiring no assumptions
at all on the evolution of productivity through time. The proof is in the appen-
dix.

Proposition 7 Non-negative income taxes: For all time periods t > 1, all
reporting histories 0'' and all 07 € © the implicit marginal taz rate T (67)
satisfies T (6}) > 0.

So unlike the savings distortion the direction of the intratemporal distor-
tion on production is completely unambiguous: the optimal effective marginal
income tax rate is never negative. Note that we have not had to make any iid
assumption in stating this Proposition. In a sense the result itself should not
be surprising. We have already seen that the first-best involves effective mar-
ginal tax rates of zero on current income, and there are benefits to moving away

36 Again, the discussion is necessarily heuristic here, since the foregoing arguments were not
established when © is a continuum. Brendon (2011) shows that the optimality conditions
explored here do indeed extend to that case in their limiting form.

37The Frisch elasticity is (¢ — 1)~ 1.
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from this situation under imperfect information only to the extent that doing
so reduces the information rent that higher types are able to extract as com-
pensation for not mimicking. This was the message of Figure 2 above. Since a
‘downwards’ movement along the within-period indifference curve of lower types
reduces the utility of higher-type mimickers, it is always better to move to a
point where this indfference curve has a slope (g—;) that is less than one.

6 General perturbations with Markov types

Whilst the iid model is instructive, it is plainly unrealistic as a description of
the way individuals’ productivities evolve in practice. If the analysis is to aspire
to practical implementability we need to generalise to allow for persistence in
types. The simplest way to do this is to assume the productivity measure mg
incorporates a Markov structure (so me (0;+1]6") = Te (6¢+1/6+)). Recall from
the earlier discussion that our confidence in the first-order approach cannot be so
sure in this case: we had to assume increasing differences in the value function
at the relaxed problem’s optimum for sufficiency, which was not a condition
easily related to the ‘fundamentals’ of the model. We proceed all the same, and
leave a more satisfactory resolution of the sufficiency question for subsequent
work.

When types follow a general Markov process we are faced with an extra

~t—1

dimension of complication. For agents with a given reporting history 8  we
may be able to define a perturbation to allocations at ¢ that has zero impact on
the expected utility at £ — 1 of a relevant truth-telling agent, but the probability
distribution under which this expectation is calculated is now particular to that
agent. An agent who is, at the optimum, on the cusp of falsely reporting
515 ! will take expectations of the future returns from a mimicking strategy
under a different probability distribution to the truth-teller — and thus may well
experience a change in the ex-ante expected utility from mimicking subsequent
to the perturbation eveb though the truth-teller does not. This would undermine
local incentive compatibility at time ¢ — 1, for movements in one direction or
the other.

In general our aim is, once again, to find a set of distinct functions A : R —
R2N and A_; : R — R? that can be used to perturb the consumption and

output allocations across all agents with a given reporting history @t 1, at ¢
and t — 1 respectively, subject to these functions satisfying the three conditions
set out at the start of Section 5.2: the preservation of incentive compatibility,
continuous differentiability in ¢ in the region of § = 0, and no net impact on
the policymaker’s initial-period objective. It is the first of these conditions
— incentive compatibility — that becomes harder to satisfy when probability
distributions over future states become type-specific. But in certain regards the
earlier analysis does go through unchanged. We focus on these similarities with
the iid problem before turning to the differences.
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6.1 Equivalences between the Markov and iid cases

Perhaps the most obvious situation in which Markov and iid cases will be equiv-
alent to one another is when we consider perturbations to the allocations at ¢4 1
and (possibly) ¢ of an agent whose allocation was not ‘envied’ at ¢. This could
either be because t +1 =1 (i.e., there was no prior period from the perspective
of our policymaker) or because the agent’s type was the highest possible at ¢
(and thus, by our maintained focus on the ‘restricted problem’, was not envied).
We can state the following:

Proposition 8 No extra distortions in first period and at the top: For
all time periods t > 1 and any reporting history ' whose terminal entry 0y is
the mazimal element of ©, denoted 8L, the optimal allocation matriz X (Gt)
satisfies the following condition:

> 70 (0210)) Wi = va) DC (030) = Y 76 (07,116) ) vaMC (07,)
0 eo\oN 0" €O
(42)
where vy, is the nth element of any vector v that satisfies the equation:

Z To (9?+1|9i\’) vy, =0

4SO

Similarly in period 1 the optimal allocation matriz X3 satisfies the following
condition:

Y. e 0) (Vus1 —va) DC(07) = Y me (07)vaMC(67)  (43)
0" e0\oN 0meO

where vy, is the nth element of any vector v that satisfies the equation:

Z o (07)vn =0

[AES(C)

The proof of these claims merely repeats the logic contained in Proposition
6, so is omitted. All we need note is that if the agent whose ¢t + 1 allocations
are being perturbed was not envied by any other agent at time ¢ then we do
not need to concern ourselves with ensuring the perturbation is utility-neutral
at t for a potential mimicker, and this concern is the only additional problem
generated by a switch to Markov transition probabilities. The agent will not
have been envied if he or she was of the highest possible type at t, or if t =0 —
and so t + 1 is in fact the first period of the problem.

This result implies all of the ‘intermediate’ intratemporal optimality con-
ditions from the iid case (that is, those associated with differential changes
to utility levels across different productivity draws at ¢ + 1) carry over to the
Markov problem for a particular subset of reporting histories. We have addition-
ally already shown that the two relatively simple perturbations — changes along
the top indifference curve and uniform utility provision, which led to the ‘no
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distortion at the top’ and generalised inverse Euler results respectively — both
carry over for all histories under Markov type processes. So all that remains is
to understand how the more general perturbation arguments are affected when
agents’ prior allocations were envied.

6.2 Differences between the Markov and iid cases

There are two important ways in which optimality requirements do change when
we switch to the Markov problem. First, the dimensionality of the space within
which outcomes can be perturbed to generate intratemporal optimality con-
ditions is reduced by one for all agents who were envied in the previous time
period. Second, and offsetting this loss of an intratemporal condition, an addi-
tional intertemporal condition arises, ensuring that the cost to the policymaker
of preventing mimicking is spread optimally through time. We explain these
points in turn.

6.2.1 Intratemporal optimality: a dimension lost

If we are considering a perturbation that applies exclusively in period ¢ + 1

~t
to the allocations of agents with a common reporting history 6, such that
0, = 07 # 0V (where the latter is the maximal element of ©), we need to
make sure that this perturbation does not affect the incentive at ¢ for truthful

reporting — either for an agent whose true type is 0} or for one whose true type is
c e . . . . ~ntl
67+ (and thus is indifferent at the conjectured optimum between reporting 9?

or /9\:) This implies that the expected utility consequences of the perturbation
must be zero under both the ‘truth-teller’s’ probability measure 7g (-|0}) and
the ‘mimicker’s’ measure mg (-|9?+1). In the iid case we were able implement
any vector of marginal utility increments across agents at ¢ + 1 provided this
vector satisfied Yy o (0") v, = 0 for the unique probability measure across
t + 1 types, mo. In general one can always find N — 1 linearly independent v
vectors that satisfy this condition.

When shocks are Markov the probability measure across t + 1 types is no
longer unique. It depends on the agent’s true type at t. But we can preserve
incentive compatibility for both truth-tellers and relevant (i.e., ‘one-higher’)
mimickers provided we perturb utilities at the margin according to a vector v
that jointly satisfies the two conditions:

> e (07l07) v = D mo (0711167 ) v =0 (44)

0" e 0m e

In general one can always find N —2 linearly independent v vectors for which this
condition is satisfied. For this reason the movement to Markov probabilities will
ultimately have denied us the capacity to carry out intratemporal perturbations
in precisely one dimension.

Lemma 1 can now be easily adjusted to cover intratemporal perturbations
in the Markov case:
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Lemma 2 For all time periods t > 1, all reporting histories 6° such that 6; =
07 # 0, and any vector v that satisfies (44) it is possible to perturb the optimal
allocations X{, 4 (Qt) in a manner that will preserve the incentive compatibility
constraints of the relaxed problem in all periods whilst raising the within-period
utility of an agent of type 67,1 by an amount v,d at t+ 1 for any 0 satisfying
|0] < & for some e > 0 and leaving utility in all other periods constant.

We omit to include a proof, since the logic is identical to that of Lemma 1,
except that it is applied here only to the subset of within-period perturbations
admissible in the Markov case. The important point is just that the specified
non-marginal perturbations can be carried out whilst preserving incentive com-
patibility for the relaxed problem in earlier periods. Thus the marginal utility
effects associated with them are implementable in a manner that will keep us
within the constraint set of the relaxed problem, and so must come at zero
marginal resource cost when the solution to the relaxed problem is known to
coincide with the solution to the general problem.

The required intratemporal optimality conditions can now be stated for-
mally:

Proposition 9 Intratemporal optimality (Markov case): For all time pe-
riods t > 1 and any reporting history 6 such that 0, = 0} # 9,{\[ , the optimal
allocation matriz X{, | (Qt) satisfies the following condition:

> 7o (0711107) (Vmt1 — vin) DC (671) = > 7o (0711167) v MC (671)
0mece\oN 0meo
(45)
where vy, is the mth element of any vector v that satisfies the two restrictions:

Z 7o (9ﬁ1|9?) Vm = Z e ( ﬁ1|0?+1) V=0
0meO M cO

The proof again follows directly from earlier arguments so is omitted here.
Together with the ‘no distortion at the top’ condition, it implies we now have
N — 1 linearly independent optimality conditions that must hold within each
time period across types that share a common prior report history. The gener-
alised inverse Euler condition gives a further condition (in all periods except the
first),®® and there are N — 1 binding incentive compatibility constraints. From
a purely analytical perspective this implies that we are one equation short of
tying down the 2N variables that are to be determined in each period (with
the exception of the first, and for any reporting history that did not feature the
maximal element of © in the preceeding period). The final step in our charac-
terisation of the problem will be to provide this missing equation, and this is
done in the next sub-section.

38 Again, an intertemporal resource constraint can loosely be thought of as substituting for
a dynamic optimality condition in the first time period.
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6.2.2 Intertemporal optimality: exploiting dynamic dependencies

Recall again the basic problem faced by our utilitarian policymaker. As we saw
in Section 3, the first-best solution would involve all agents facing a within-
period marginal income tax rate of zero, so that the marginal utility value
of a unit of extra product is equal to its marginal utility cost. At the same
time, the marginal utility of consumption would be equalised across agents.
When types are unobservable these objectives are mutually incompatible. The
ability of higher-type agents to mimic implies they would only report their types
truthfully if given substantially more utility than lower types. But by raising
the tax wedge on lower types — reducing their consumption and output levels
simultaneously along a within-period indifference curve — one can ensure that
the marginal benefits to higher types from mimicking are reduced, appealing to
the intuition that we developed when presenting Figure 2. This in turn reduces
the utility rents that higher types can extract from the policymaker — these
rents being spread at the optimum across the contemporary and subsequent
periods, in a manner that satisfies the inverse Euler condition. Seen in this light,
the policymaker’s problem is to resolve the trade-off between the provision of
wasteful amounts of current and future utility to higher types, and the use of
wasteful tax wedges that impede the production of lower types.

When productivity shocks are Markov there is a third alternative. Instead
of reducing higher types’ utility rents through tax wedges on lower types, it is
possible to do it by ‘twisting’ the provision of utility across states in subsequent
periods, so that the expected future benefits to mimickers from a given report
are reduced, even whilst the expected benefits to truth-tellers are held constant.

That is, if an agent were to report some 9" such that 0, = 07 + 0V, it is always
possible to shift allocations across states in period t + 1 (relative to the least-
cost means of providing a given level of expected utility to truth-tellers) so that
agents whose true type is 9?“ see a reduction in their expected utility from
mimicking under the measure mg (-|9?+1), whilst expected utility under the
measure g (+|0}') remains unchanged. The theory of the second best suggests
there will in general be net benefits to distorting ¢+ 1 allocations in this manner.

Before stating the main argument we must provide an equivalent to Lemma
2 to confirm incentive compatibility for dynamic perturbations. We have the
following, the proof of which is in the appendix:

Lemma 3 For all time periods t > 1, all reporting histories 6° such that 6, =
0y # 9,{\[ , and any vector v that satisfies the two restrictions:

Z To (9ﬁ1|9?) V=0
omeo

and

> 7o (07al07 ) vm =1

0meO

it is possible to perturb the optimal allocations (c,}k (Ht) Ui (Qt)) and Xy, (Ht)
(assumed to be interior) in a manner that will preserve the incentive compati-
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bility constraints of the relaxed problem in all periods whilst raising the within-
period utility of an agent of type 03\, by an amount v, at t + 1 for any §
satisfying |8] < € for some ¢ > 0 and leaving equilibrium utility in all other
periods constant.

This result immediately takes us to the final optimality condition that we
desire. The proof is in the appendix.

Proposition 10 Dynamic cost-spreading: For all time periods t > 1 and
any reporting history 6° such that 0, = 0} # Giv , the optimal t + 1 allocation
matriz X7, (0") together with the optimal t allocation pair (ci (6°),y; (6"))
must satisfy the following condition:

BRi+1DC () (46)
= Y 7o (0710F) (Vw1 —vim) DC(6731) — D e (6714167) v MC (677)
0mee\oN 0™ ecO

where v, is the mth element of any vector v that satisfies the two restrictions
given in Lemma 3.

It is well known that the shift from iid to Markov transition probabilities
complicates substantially the computation of optimal dynamic policy in mod-
els such as this — the point is explored at length, for instance, by Fernandes
and Phelan (2000) in the context of a dynamic agency model, and by Kapicka
(2011) in the context of dynamic Mirrleesian problems. Equation (46) provides
one interpretation for why this is so: when shocks are Markov the policymaker
has the capacity to spread through time the costs of any given utility advantage
that mimickers have over truth-tellers, and it is always optimal to exploit this.
That fact introduces an extra dynamic optimality requirement, on top of the
generalised inverse Euler condition.?® This implies one needs more information
about past productivity draws when solving for an optimal within-period allo-
cation in the Markov case than in the iid case, since one must ascertain not just
the average level of the marginal cost of utility provision to implement across
agent types within a period, but also the extent to which allocations should be
‘twisted’ to reduce prior benefits to mimicking.

It is also worth emphasising that the benefits to twisting allocations in this
way are time-inconsistent. As Proposition 8 shows, if t = 1 the right-hand side of
(46) would be zero, so in all subsequent periods an ‘uncommitted’ policymaker
would have an incentive to revert to the least-cost means of providing a given
utility distribution to agents with a known prior history.

In general, the optimality consideration highlighted here seems likely to re-
sult in greater equality at ¢t + 1 the higher is the marginal tax rate for an agent
at t. This is because, as discussed, higher marginal rates are really a means

39K apicka (2010) makes a similar observation when using a first-order value function method
to study a specific example of a dynamic Mirrleesian model. The idea is also implicit in the
general treatment of dynamic incentive provision under the first-order approach by Pavan,
Segal and Toikka (2011).
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for the policymaker to reduce the utility gap that has to exist between agents
of adjacent types in order to prevent mimicking by the more productive. But
one can also reduce this gap by reducing the benefits higher types could expect
to obtain in future periods subsequent to mimicking, assessed under their type-
specific probability distribution. Assuming that this latter distribution places
greater weight on higher-type outcomes in the future than does the distribu-
tion specific to truth-tellers, one can disadvantage mimickers at ¢ whilst leaving
truth-tellers unaffected in expected utility terms by shifting ¢ + 1 utility away
from higher types and towards lower types. Thus the ‘twisting’ that we have
highlighted seems very likely to move outcomes towards greater equality in fu-
ture wutilities the higher are initial tax rates. The next subsection confirms that
this is indeed the case, and in the process provides a novel expression for the
dynamics of the labour wedge, and of the policymaker’s willingness to trade off
equity and efficiency through time.

6.3 Equity, efficiency, and the dynamics of the labour
wedge

Again, it seems desirable to arrive at some more direct economic results as payoff
for the abstract analysis above. The most useful statements can be obtained by
generalising to the Markov setting our earlier treatment of the equity-efficiency
trade-off. To this end, suppose once more (and again, without loss of generality)
that the elements of © C R are evenly spaced on the real line, with 0" —0" = ¢
for all n € {1,..., N — 1}. Then for any ¢ > 1 and any agent whose productivity
in period ¢t was 6" for m € {1,..., N — 1} we can fix a utility increment vector
v for application at ¢t + 1 whose nth entry is given by:

{ ?+1 - Zetﬂe@ Te (9t+1|9?) 9t+1}

= 1
S oinco T (Be411077) i1 = 29, . co To (Br41]67") Or11

The denominator here is the difference in expected type in period ¢ between
those who drew 9?“ and those who drew 6" in the previous period, whilst the
numerator is the difference between 6}, ; and its expected value for the previous
period’s truth-tellers. It is clear by inspection that this vector will satisfy the
requirements of a v vector in Proposition 10; re-writing condition (46) then
gives:

(47)

Un

- E[DC (0141) |0;"] — Cov (0141, MC (0141)) |67"]

R 11eDC (67%) =
PRineDO(6)) (B [Beaal67 ]~ B alf']}

(48)

where the conditional expectation and covariance terms are taken across types
with common productivity draws to ¢ — 1.40

40Farhi and Werning (2011) provide a special case of this condition under the assumptions
that consumption and labour supply are separable in preferences, the disutility of work is
isoelastic, and productivity is AR(1).
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¢ here should again be treated as a normalising factor, allowing for the fact
that the cost of incentivising types ‘one-higher’ than truth-tellers through move-
ments along a truth-teller’s indifference curve (i.e., DC (#)) will become harder
the smaller the difference between truth-tellers and mimickers.*! The term on
the left-hand side of the equation is then proportional to the marginal efficiency
cost of the labour tax wedge imposed in period t on type 6}". Proposition 7
implies this object will always be non-negative. The term on the right-hand side
can be digested in pieces. The fraction’s numerator is familiar from equation
(40) above: it gives the difference between the average marginal efficiency costs
of the within-period tax distortions implemented in period ¢ + 1, and the costs
from excessive inequality. The denominator, meanwhile, is the difference in the
expected type draw for ¢t + 1 between agents whose t-period draws are 9?“ and
07" respectively (relative to €, the absolute difference between these types). It
is a natural measure of the persistence of productivity draws, and one would
expect it to be positive in all cases of interest.

Taken together, (48) has a remarkably clear message: persistent shocks mean
the policymaker should implement more equality for any given within-period
efficiency cost. This is what it means for the numerator of the fraction to be
positive, which — according to (48) — it must be under any optimal scheme
whenever the tax wedge was strictly positive in the prior period. Note that this
relatively high equality only holds across agents with a common shock history
up to period ¢; it need not carry over to the economy as a whole. Nonetheless,
it is behind the numerical result obtained under separable preferences by Farhi
and Werning (2011) that optimal tax wedges should drift upwards on average
over time when type draws follow a random walk.

Interestingly Farhi and Werning focus on the cross-sectional profile of the
labour wedge to argue that the extra dynamic complications introduced by
(48) result in more regressive outcomes relative to the iid case — since marginal
taxes tend to drift upwards most over time for those who receive relatively low
type draws. The interpretation we provide here appears quite the opposite:
persistent shocks introduce a bias towards equity relative to efficiency, which
is hardly a ‘regressive’ move. Reconciling the two interpretations highlights an
important point often overlooked in popular discussions of tax reform: high
marginal tax rates at any given point in the income distribution are a way for
average rates to be increased higher up. The whole reason for inducing within-
period labour supply distortions in the first place is to reduce the compensation
that more productive agents must be paid to incentivise them to work. Hence
the regressivity in marginal rates identified by Farhi and Werning is really just
a means for engineering greater progressivity in utility outcomes in equilibrium.

Two other interesting observations can be made about (48). First, note that
it has a ‘reset’ feature. If at any point in time ¢ the highest productivity 2 is
drawn then we know from Proposition 8 that the set of optimality conditions at
t + 1 becomes identical to the iid case. This implies in particular that equation
(40) will hold: the numerator of the fraction on the right-hand side of (48) will

41Gee the discussion in Section 5.5.5.
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equal zero, with efficiency and equity considerations exactly balancing. Any
average drift towards greater equality always has the potential to be dominated
by ‘no distortion at the top’.

Second, if type draws are I(1) and the interest rate is equal to the inverse of
the discount factor then the object DC (6) will in general increase over time. In
this event the denominator of the fraction on the right-hand side is one, and since
the covariance term will be (at least weakly) positive the equation reduces to a
random walk plus a stochastic drift term. Thus full persistence in type draws
translates into persistence plus drift in labour wedges. This is a generalisation
of the ‘tax smoothing’ result of Golosov, Tsyvinski and Werning (2006), who
showed that labour wedges should be constant through time in the event that
type draws are drawn ‘once and for all’ in the first period of the model. In that
case there is no variation in type draws at t+ 1 for any given draw at ¢, implying
the covariance term drops from (48) whilst the conditional expectations reduce
to certainties. Allowing continued uncertainty instead biases us away from tax
smoothing and towards continued upwards drift in the labour tax wedge.

As a point of comparison with the literature it is again instructive briefly
to note a special case of (48) in which ¢ — 0 and more specific preference
assumptions are made. To this end we once more let the utility function take
the form:

ueit) =t () - 5 ()" (49)

The optimality condition is then:

o, 7O ) " [0y <Cesdif ] — Cov[(Brs1, ¢ (6r41))161]
t+1 1 — T (et) 'l/J DiBtE [9t+1|9t]

(50)
This expression is, reassuringly, identical to one already provided by Farhi and
Werning (2011) under the same preference restrictions;*? but we have arrived
at it by a very different route. The general expression from which these authors
take (50) as a special case is a comparatively unwieldy object relative to (48),
dependent in particular on the derivative of a weighting function that is defined
in their paper, and on a costate variable that their method does not allow them
to eliminate when preferences are non-separable. The method presented in this
paper appears to permit much sharper intuition regarding the general character
of optimal distortions through time.

7 DMartingale convergence results

The final major area on which it is worth focusing attention is the evolution of
optimal outcomes over time, and in particular at the limit as the time horizon
becomes large. Suppose that the real interest rate were in all time periods

42C.f. their equation (13).
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equal to the inverse of the discount factor 8. Then the generalised inverse Euler
equation can be written as:

1—a(f) _ 1 —a(f41)
0 Ty @ a @)~ 2= e Bl e a O]

0i41€0
(51)
That is to say, we have a martingale in the marginal cost of (locally incen-
tive compatible) utility provision, which we have chosen to write out in full
here. When preferences are separable between consumption and labour supply,
a(0:) = 0 holds, and the expression collapses to a martingale in the inverse
of the marginal utility of consumption — an object that is strictly positive and
(under the Inada conditions that we have assumed) bounded below at 0. As
many authors have observed, this boundedness allows the application of Doob’s
martingale convergence theorem, which implies almost sure convergence in the
inverse marginal utility of consumption to a finite (possibly random) limit. If
one can also show that the optimum will never involve consumption staying
fixed at a non-zero value (which is a likely consequence of the policymaker’s
ever-present need to provide incentives43), convergence to zero consumption
becomes the only possibility.
To generalise these results to the case at hand we need to put a bound on the
object in (51) — the marginal cost of utility provision — for preference structures
more general than the separable case. A first step is the following.

Lemma 4 Under an optimal plan that solves the restricted problem, . (0;) +
uy (0¢) a (0:) > 0 always holds.

Proof. By definition

e (07) —ue (0,307)
)= —7=

wy (07501) =, (07)

a (07

(52)

for n < N, and « <9iv ) = 0. In the latter case the result follows immediately
from u. (6¢) > 0. In the former case we have from equation (5):

U §n;9"Jrl Ue §n;9”+1
ygytw;) ). (ufw;z% ) (53)

43In a useful discussion, Kocherlakota (2011) notes the possibility of convergence in con-
sumption to one of the endpoints of some bounded interval of the real line in the event that the
marginal disutility of labour supply is bounded away from zero and total labour supply has
an upper limit. The intuition here is that when agents are sufficiently ‘wealthy’ or sufficiently
poor they will, respectively, work zero or the maximum possible number of hours whatever
their productivity draw — so stable consumption is possible following convergence to these
limits.
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Rewriting our object of interest, we have:

~n wy (07071
e (875070 — e (07) 272

te (01) + uy (01) a (0;) = (54)

uy (07 0771)

1= uy (07)

The numerator of the right-hand side is clearly positive by the preceeding in-
equality, and the denominator likewise by the fact the marginal disutility of
production is lower for higher types (c.f. inequality (2)). m

Given the definition of « (6;) this allows us almost immediately to state a
bound when consumption and labour supply are Edgeworth substitutes. But
when they are Edgeworth complements our scope for doing so proves surprisingly
limited. Taken together we have the following result.

11—« 0t

wc(0t)+uy (0
the restricted problem, unless (a) consumption and labour supply are Edgeworth

complements, and (b) productivities follow a non-iid process.

Lemma 5 Yate) > 0 always holds under an optimal plan that solves

Proof. With separability between consumption and labour supply « () =
0, and the assumption u. (f;) > 0 is enough to confirm the result. When
consumption and labour supply are Edgeworth substitutes we have « (6}) < 0
(the marginal utility of consumption is higher for mimickers than truth-tellers,
since the former need not work so hard to produce a given level of output), and
the result follows from Lemma 4. When consumption and labour supply are
Edgeworth complements it is possible to prove the bound only for the iid case.
The reasoning is far more involved, and we relegate it to an appendix. ®

Having put a zero lower bound on the marginal cost of utility provision for
these specific cases, when R, = 87! for all ¢ a direct application of Doob’s mar-
tingale convergence theorem implies the object W%W
almost surely along all realisations of 8°° to some value X € [0, 00), where X is
potentially a random variable. We want to be able to say more about the value
of X. In fact, it turns out — as in the separable case — that X must equal zero.
The next Proposition establishes this.

must converge

Proposition 11 Convergence: Suppose Ry = 7' for all t > 1. Then
W%W %0 holds under any optimal plan that solves the restricted
problem (and is interior at all finite horizons), unless (a) consumption and
labour supply are Edgeworth complements, and (b) productivities follow a non-

1id process.

Proof. See appendix. m

This result is an obvious generalisation of the ‘immiseration’ results obtained
by studying convergence of the standard inverse Euler condition. Moreover, al-
most sure consumption immiseration (in the sense that inverse of the marginal
utility of consumption — and hence consumption itself — must tend to zero for
almost all agents) is a direct implication of this result, when one recalls that
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uc(et)tui((%tt))a(ﬁt) = uc(let) when 0, = 0V (the highest type): the outcome for

an agent who draws the top productivity parameter in the tth period must
be immiseration (almost surely) at the limit as ¢ becomes large, and incentive
compatibility then demands that all lower types with the same history must
have a still worse lot. So the more complicated nature of the expression for
the marginal cost of utility provision in the non-separable case does not under-
mine the extreme predictions regarding long-run consumption when martingale
convergence can be applied. The political difficulties associated with long-run
commitment to a scheme with such severe future outcomes are plainly immense,
even abstracting from the more fundamental question of whether the welfare of
the initial period’s cohort of agents ought to be the exclusive concern for public
policy.** For this reason alone the immiseration result is a troubling one: it
is hard to imagine a scheme more likely to result in government default than
one that demands its future citizens should be enslaved to pay the debts of the
past.®?

Perhaps the more surprising result of this section, though, is that when
productivity follows a Markov process and consumption and labour supply are
Edgeworth complements — so that those who are working longer hours with a
given level of consumption have a higher marginal utility of consumption — we
cannot put a zero lower bound on the marginal cost of utility provision. Indeed,
it is quite possible that this marginal cost may turn negative. This possibility
we are able to confirm through a finite-horizon computed example, the details
of which we now present.

7.1 Computed example

We assume that production is linear in labour supply, with the marginal product
of labor equal to 6, and that the utility function takes the form outlined in King,
Plosser and Rebelo (1988):

ct=s

ulewid) = t—exp{(s Do (3)] (55)

with the labour disutility schedule v defined by:
l1+v
T 14w

v(l) (56)

This function implies that consumption and labour supply are Edgeworth com-
plements provided ¢ > 1, and are Edgeworth substitues for ¢ < 1.

44This latter question is explored in detail by Farhi and Werning (2007).

45 Clearly if consumption is reaching zero at the limit then the within-period surplus raised
for almost all histories must be substantial. We know, for instance, that ‘top’ agents will
certainly be producing very large quantities of output, since u. + u, = 0 for these types.
This surplus must be being used either to service interest on outstanding debts or to fund
the lavish consumption of some measure-zero subset of agents whose luck has never been out.
The latter is probably even less polictically plausible than the former.
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A substantial practical advantage of the solution method presented in this
paper is that it provides a complete set of equations necessary to solve any given
example — so provided there is a finite number of types and of time periods, for
any given parameterisation we can obtain a solution simply by solving these
equations numerically. Specifically, if T" is the total number of time periods and
N the cardinality of © then we will have Zle 2N'* variables to tie down in total
(in each period, an output and consumption level for an agent of each current
type, for each history). The method presented above delivers precisely this
number of equations, which can be jointly solved to machine accuracy using
standard non-linear solution algorithms. Unlike methods that exploit value
function iteration, the approach is equally fast whether shocks follow an iid or
a Markov process, with the latter simply involving a slightly different set of
equations.

For our example we assume two types (identical across all time periods): 6,
and Op, with 8, < 8. Transition probabilities are denoted as follows:

7o (0 =0g) = PH if t=1
W@(et:9H|9t—1:9H|):P]§I if t>1
TO (9t=9H|9t_1=9L|)=P£I if t>1

We set T = 6, implying 252 variables to determine. Since at this stage the
purpose of the example is more to find a counterexample to ﬁ%ﬁm >0
than to claim realism per se, and since this counterexample is more likely to arise
in our finite horizon the greater is the value of ¢,*6 we choose the relatively high
value: ¢ = 10. For the other parameters we choose values v = 2 and 8 = 0.99.
We normalise 6, = 1 and set § = 2. The inital probability P we set to 0.5,
with strong type persistence thereafter: P = 0.9 and PH =0.1.

Figure 4 is a histogram summarising the distribution of the marginal cost
of utility provision across agents in the 6th (and final) period of the simulation,
with bins 0.1 units wide (the units here being the single consumption good).
The high degree of persistence accounts for this distribution’s clear bimodal
character.” What is of more interest is that the marginal cost of utility pro-
vision (provision, that is, in a manner that preserves within-period incentive
compatibility) is negative for exactly half of the agents in this period. These
agents are the half of the population with contemporaneous productivity ;.48

A negative marginal cost of utility provision also obtains for almost all low-
type agents in the 5th period of the simulation, so the result is not dependent

46High values of ¢ imply strong complementarity, and thus a much lower marginal utility
of consumption for mimickers at a given allocation than for truth-tellers. To offset this re-
quires utility provision along a vector that will increase production requirements significantly
alongside any extra consumption provision (this exploits the higher marginal disutility of pro-
duction on the part of truthtellers). Since the marginal cost of utility provision is lower the
more output is increased for a given consumption increase, higher complementarity is likely
to be associated in general with lower marginal costs.

47Roughly three fifths of agents draw the same type in all six periods.

48Recall that high-type agents must be associated with positive marginal costs, since
o (0m) = 0 always holds.
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Histogram of marginal cost levels, t=6
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Figure 4: Distribution of marginal cost of utility provision in 6th period
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upon the period in question being the last. On the surface it is a very counter-
intuitive outcome (surely the policymaker can provide utility to a subset of
agents and generate a surplus?), so it is worth examining it in detail. Recall
that when consumption and labour supply are Edgeworth complements, a pro-
vision of utility by consumption increments alone at a given output level would
benefit low types by more than (mimicking) high types, since the latter supply
less labour to produce the given quantity of output — and thus do not bene-
fit from complementarities to so great an extent. Hence to preserve incentive
compatibility (for utility movements in either direction) any consumption incre-
ment must be accompanied at the margin by an increase in production, which
causes greater marginal disutility to lower types than higher (the former are
already working longer hours, so their marginal disutility of effort is greater),
eliminating the utility imbalance.

The results of the simulation suggest that the choices of low types are, at
the optimum, being distorted sufficiently far away from a point at which the
slope of their within-period indifference curve equals one that even movement
along a vector giving equal consumption and output increments would still raise
their utility by more than it would raise the utility of high-type mimickers —
and so output must be increased by more than consumption at the margin
to obtain balance. Notice that this suggests the output of low-type agents is
being restricted substantially at the optimum: the lower is output the lower
is the difference in the marginal effect on utility of an increase in it between
truth-tellers and mimickers, and so the more it must be raised for an incentive-
compatibility-preserving perturbation.

Why is it not possible to exploit the negative cost of utility provision to
generate a surplus? It is simply that there does not exist a means to provide
utility to a given agent in a way that generates resources whilst at the same time
offsetting any effects on incentive compatibility constraints. A gift of extra utility
to a low-type agent in the 6th period would induce high-type agents with the
relevant prior history to switch to a mimicking strategy. The cost of preventing
this, through an equal utility increment to a high-type agent, may directly offset
the generation of a surplus. Even if not, incentive compatibility in the 5th period
would also be violated if we are considering allocations to those whose prior
report was 6r. Equally in the 5th period, a gift of utility to a low-type agent
whose marginal cost is negative could be incentive-compatible if accompanied
by a reduction in utility across all agents in the subsequent period; but the
aggregated present value of the (negative) costs of these perturbations will be
zero, by the generalised inverse Euler condition. Ultimately, no matter what
composite marginal perturbation one tries to construct, either local incentive
compatibility must be violated, or no surplus raised.

The important question that follows from these results is whether the poten-
tial for a more benign long-run outcome than immiseration is indeed likely to
be realised in the event of complementarity: just because we cannot prove it by
martingale convergence does not mean immiseration can be ruled out. One can
only conjecture in the absence of a full solution to the infinite-horizon model,
but there are reasonable economic grounds for believing immiseration will be
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avoided. Specifically, note that the tendency towards immiseration (when it
does hold) must derive in part from the finite stock of resources at the poli-
cymaker’s disposal. As time progresses, either a prior tendency to front-load
utility provision through debt finance, or promises of very high utility levels to
a measure-zero (perpetually lucky) subset of agents, or some combination of the
two, results in the maximum possible surplus being extracted from almost all
agents. But if in the case of complementarities the marginal cost of reducing
the utility of agents turns negative then a tendency to immiserate may well be
counter-productive — costing resources rather than generating them. Clearly the
policymaker has no direct desire to see immiseration occur, so it seems unlikely
that this cost will be worth paying.

7.2 Linking saving wedges and immiseration

The results of this Section — in particular Lemma 5 — allow for a slight extension
to the set of circumstances in which we can claim it is optimal to deter savings
(in some meaningful sense). We can state the following.

Proposition 12 Deterred savings (3): Suppose type draws are iid across
agents and time. Then for all time periods t > 1 and for all reporting histories
0", if consumption and labour supply are Edgeworth complements then savings
will be deterred at the optimum, in the sense that the allocations (c;k (Gt) JYE (Gt))
and X\ 4 (Gt) will satisfy inequality (27), with that inequality holding strictly so

Ue(Orp1)tuy (Orp1)o(0ig1)
1—a(0¢41)

long as the object varies for different draws of ¢41 € ©.
The proof is identical to that of Proposition 5, which can be applied whenever
the bound:
l1—« (Qt)
te (0¢) + uy (0¢) o (0r)

holds — which we now know to be the case under complementarity and iid pro-
ductivity draws by Lemma 5. What is interesting here is that the cases in which
we can say with certainty that it is optimal to deter savings (relative to some
optimality criterion that would have to hold under autarky) are precisely the
cases in which we can confirm immiseration as a limiting outcome: essentially,
all situations except that of Markov productivity draws and complementarity.
This is unlikely to be a coincidence. If savings are being distorted at the opti-
mum, the policymaker is implicity choosing to ‘front-load utility’ in expectation.
This is just a direct reading of inequality (27). But if utility is being front-loaded
it would not be at all surprising if the policymaker’s wealth were deteriorating
continually over time — so that outstanding debt obligations become cripplingly
large as time passes. In this case agents in the economy would have to put in
large amounts of work for little or (at the limit) no return, just to preserve the
tax scheme’s solvency. This implies immiseration. Only when the optimality
of ‘front-loading’ utility no longer necessarily goes through can we escape this
‘trap’.

>0 (57)
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8 Conclusion

The main contribution of this paper is a methodological one. Dynamic models
with asymmetric information are a growing source of interest to macroecono-
mists, and the dynamic version of the Mirrlees income tax problem has gen-
erated particular interest. But practically all of the analysis of these models
to date has relied on the recursive computation of value functions, defined by
a Bellman-type operator appropriately augmented to ensure past promises are
kept. These methods are extremely powerful and widely applicable, but their
results can be difficult to interpret, simply because it is not always clear exactly
which trade-offs have contributed to generating a given policy function or time-
path for a variable of interest. Our analysis gives an alternative means to gain
insight into this class of problems, through carefully-chosen perturbations to
optimal allocations. In particular, we appeal to the revelation principle to treat
the optimum as one in which individuals make direct reports of their types,
and investigate how to perturb allocations along dimensions chosen to ensure
there will be no changes to these reports — at least for small enough perturba-
tions. This approach allows us to obtain a complete set of optimality conditions
that, together with the binding incentive compatibility restrictions and an ag-
gregate resource constraint, are sufficient to characterise the problem’s solution.
The method is analogous to solving consumer choice problems by asserting that
marginal rates of substitution must equal price ratios.

An important limitation to our approach is that we must know in advance
exactly which incentive compatibility constraints bind at the optimum. In the
static Mirrlees problem the single crossing condition is known to ensure these
constraints bind ‘downwards’ locally, and we present sufficient conditions relat-
ing to the optimal allocation that can be checked to verify whether this extends
to the dynamic case for any given example. We proceed under the assumption
that it does, but requiring ez ante knowledge of this essential characteristic of
the solution is undoubtedly a disadvantage. Developing the sufficiency condi-
tions into a more easily interpretable form, particularly when shocks are non-iid,
is an important area for future research.

The optimality conditions that we derive are easiest to understand through a
graphical representation of the problem in output-consumption space. They are
a set of cross-restrictions on (a) the cost to the policymaker of moving ‘along’
each agent’s agent’s within-period indifference curve, reducing that agent’s con-
sumption and output jointly, and (b) the cost of providing a unit of utility to
each agent in such a way that a mimicking higher-type agent would receive the
same utility increment. Appropriately-chosen composites of these movements,
either within or across periods, can ensure local incentive compatibility always
continues to hold, and so cannot be applied in the neighbourhood of the opti-
mum in a way that would generate a surplus for the policymaker.

This analytical method is likely to be very useful from a computational per-
spective, since it eliminates any need to solve maximisation problems directly
when calculating the optimum to a given problem. Instead, one need only im-
pose (jointly) the complete set of equations known to characterise that optimum.
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When the problem has a finite and sufficiently small number of time periods,
and relatively small set of productivity types, the solution can be established to
machine accuracy by solving a quite manageable set of simultaneous equations.
In an infinite horizon problem functional approximation will still be necessary,
since future values feature in incentive compatibility constraints, but these val-
ues should be expressible as functions of a relatively small set of variables, and
will not have to be defined by a functional operator.

But the focus of the paper has been on exploiting the analytical results
that a perturbation approach can expose, and here there are several. First, we
have shown that many of the well-known results from static income tax theory
generalise to the dynamic case. In particular, marginal income tax rates are
always weakly positive at the optimum — in the sense that the solution always
involves individuals being willing to produce at the margin for a return that is
(weakly) less than their marginal product, and agents whose type is the highest
always have a zero effective marginal tax rate. We have also been able to
obtain a set of optimality conditions that is considerably simpler and easier to
interpret than those conventionally analysed in the static income tax literature,
linking effective marginal income tax rates at each point in the distribution to
a small number of economically meaningful variables. Thus it is hoped that the
interaction between this paper and the static optimal tax literature could work
both ways.

In general higher effective income tax rates correspond to higher productive
distortions, and are undesirable from a policymaker’s perspective for this reason.
But against this ‘efficiency’ cost must be balanced the ‘equity’ benefit that higher
tax rates deliver, reducing the rents that more productive agents are able to
enjoy. Optimal policy can be interpreted as resolving a trade-off between these
considerations, given the utilitarian objective that is assumed. In this paper we
are able to provide a novel summary statement of this trade-off, showing how
the expected value of the resource cost from productive distortions across types
with a common prior history should be linked to a measure of the covariance
between agents’ types and the marginal cost of providing utility to them. Since
this marginal cost will be higher the greater the quantity of utility an agent
already enjoys, this covariance term is interpretable as a measure of inequality.
We show that the higher it is, the higher the average productive distortion
should be.

Perhaps more surprisingly, we also show that when productivities are per-
sistent through time the policymaker should be willing to tolerate more and
more productive inefficiency (across types with a common history), relative to
the degree of inequality. The reason for this derives from a desire to reduce
the returns from mimicking. The associated optimality condition suggests that
provided persistence is great enough, effective marginal tax rates should drift
upwards through time on average. This result has already been obtained nu-
merically, and analytically under specific preference assumtions, by Farhi and
Werning (2011). Here we show the extent to which it will generalise.

Turning to optimal savings taxes, it is already well-known that in the event
of separability between consumption and labour supply it is optimal to apply a
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positive tax wedge to savings, in the sense that the marginal utility of consump-
tion in period t is below its expected value at t + 1 (allowing for discounting
and the interest rate): this follows from the well-known ‘inverse Euler equation’
that holds in that case, combined with Jensen’s inequality. We have been able
to generalise this result in two regards. First, and rather limited in its scope,
we have shown that the marginal utility of consumption for an agent whose
productivity type is the highest possible must also be below the value it would
take under autarky (relative to its expected value in the following period) when
consumption and labour supply are Edgeworth substitutes. But one need not
focus simply on the consumption Fuler equation as characterising dynamic op-
timality: the marginal rate of substitution between output levels in one period
and the next, or between arbitrary vector combinations of consumption and
output in one period and the next, must likewise equal the intertemporal price
ratio at any autarkic allocation. Specifically, the inverse of the marginal cost
of incentive-compatible utility provision is the marginal utility associated with
a particular joint change in consumption and output, and the existence of an
optimality condition relating to this object allows us to confirm that savings are
always deterred at the optimum (in an economically meaningful sense) unless
consumption and labour supply are Edgeworth complements and productivity
draws are non-iid.

This latter result has strong connections with the final area that we have
investigated in detail: allocations in the long run. Once again, except in the
case that consumption and labour supply are Edgeworth complements and pro-
ductivity draws are Markov, we have been able to put a zero lower bound on
the marginal cost of incentive-compatible utility provision — which in turn will
follow a martingale process in the event that the real interest rate equals the
inverse of the discount factor 5. Martingale convergence theorems then imply
almost sure immiseration for all agents in the economy under standard prefer-
ence assumptions. With complementarity and Markov shocks we have shown
by counterexample that the marginal cost of utility provision can in fact turn
negative, and so immiseration need not take place. Indirectly this result seems
to shed some light on the cause of immiseration under alternative assumptions:
the fact that it need not occur in precisely the same case that savings need not
be deterred at the optimum suggests a connection between the implicit decision
on the part of the policymaker to front-load the provision of utility when savings
are being deterred — a strategy that is likely to involve some initial borrowing —
and immiseration as the costs of servicing the resulting public debt accumulate.

Finally, we note that the methods used in this paper can be applied more
widely, albeit with some adaptation. For instance, a companion paper outlines a
similar perturbation method applicable to dynamic Mirrlees problems in which
the type space © is a continuum. Reassuringly all of the results from this paper
extend to that case in the natural way, and we are able to provide an expression
for optimal marginal tax rates in the static model that is considerably simpler
than those available in the literature to date. A second area of applicability
is to dynamic agency models, where a similar set of optimality conditions can
be derived under the assumption that the ‘first order approach’ is valid. This
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seems an interesting avenue for further research.
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A Appendix

A.1 Proof of property 4 of first-best allocation (decreasing
utility in type)

It is useful first to show that normality of leisure implies uce + uey < 0. The
consumer’s within-period problem (at autarky prices) is:

max u (¢, y; 0)
cy

subject to
c=yY+w

for some endowment w. At any interior optimum we will have u. = —u,, and
differentiating both this and the budget constraint totally with respect to w
gives:

dy  Ueet Uy

dw  Uee + 2uey + Uy
The denominator here is negative by the negative definiteness of the partial
Hessian, and so % < 0 only if uce + uey < 0, as required.

We can now analyse the impact of an increase in 6 on first-best outcomes by
taking a total derivative of utility with respect to 6, under the twin restrictions
(valid at the first-best) that u. and u, remain unchanged. With a little algebra
it can be shown that these restrictions imply:

de _ uyyUcg — Ueylyo

2
do UZy — Ueclyy
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dy _ UccUyp — UcyUch

o ugy — Ueelyy
The overall effect on utility at the margin is:
% = Ug+ U de +u dy
g~ T Cde T TV de

up + 1y Uy (Uee + Ucy) — Uep (Uyy + Ucy)

2 _
ucy uCCuyy

(where we have used that u. = —u, at the optimum). Negative definiteness
of the partial Hessian [ ZCC ch implies u2, — ucctyy < 0,*2 and we have
ey Uyy

uy < 0, 50 if uee + uey < 0 then condition (2) gives:

Uo —
du Uyy 2 (Uee + Uey) — e (Uyy + Ucy)
@ < Ut Uy - 5
Uy — Ucclyy

= wp (1 4 Yy (Uce + Uey) — ey (Uyy + ucy))

2
ucy Uccllyy

= 0

where we have additionally used condition (3). The result then follows imme-
diately.

A.2 Proof of Proposition 1

For the sake of clarity we index the N elements of © in ascending order, so
0y > 07" whenever n > m for all n,m € {1,..., N}. We have imposed that

~t—1 _ ~t—1
w(ops08,0 ) =w (077 %507,0 )

for all n € {2,..., N}, and wish to show that this implies
w (o7 9;2@“) >w (o 9?,5“1)

for all m € {1, ..., N}, given the increasing differences condition
We first consider the case in which n > 1, and show

W (9?; 9;&@“) > W (9;"; ey,@t_l)

for all m € {1,...,n — 1}. For m = n—1 this holds by assumption. For m =n—2
we have by increasing differences:

(9" L. eyf’l) (9" Lgn—1 g 1)

_ /\t 1 /\t 1
> w0000 ) —w (000 )
_ Yye
49 Consider movements according to the vector { ’ltcc } here.
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w(ertend ) =w (onsend )
and
(ot ) < (o)

so prior inequality implies
~t—1 _ ~t—1
W(Q?;Q?,H ) >W<9? 2,070 )
as required. Taking m = n — 3, we then have by increasing differences:
-1 ~t—1
w(07=%0p,0 ) - w (07750720
-1 ~t—1
> W (9?,3;9?75 ) —Ww (92*3;0;1*2,# )
Again, by
_ _o ~t—1 _ _o ~t—1
w(or 0720 ) = w (0770720 )
this inequality collapses to
_ ~t—1 _ ~t—1
W (9? 2,079 ) W (f)y 3,070 )
and we can apply the earlier result
~t—1 _ ~t—1
W(Q?;Q?,H ) >W<9? 2,070 )

r
to assert i1

~t—1 ~
w(op308.0 ) > w (077%507,0 )

as required. The same argument can clearly be applied for all m € {1,...,n — 1}.
When n < N we must in the same way consider the casesof m € {n+1,..., N}.

For m = n + 1, we have immediately by the binding restriction on n + 1-types,
together with increasing differences:

0 = (oot ) —w (050000 )
> w (o eg,@“) W (9;%9?,5”1)
as required. By similar logic, for m = n + 2 we have:
0 = W (9;*2-9?“ 5“) —w (9;L+1-9;L+2 5“)

w (6742 9¢,§H) W (9;*1;9?,5“)

\Y

and the condition
w (o eﬁ,@t’l) >w (o eﬁ,@t’l)

then delivers the required result. Again, we can apply an identical argument
inductively for all remaining m < N. This completes the proof.
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A.3 Proof of Proposition 3

We consider now a perturbation to outcomes in both time ¢ and time ¢ 4 1.
Specifically, we wish to choose A (§) and A_; (§) functions so that the agent
with a truthful reporting history of 6" will experience a reduction in within-
period utility at time ¢ of 50 units, and an increase in within-period utility at
time ¢t + 1 of 0 units for any realisation of the t + 1 productivity parameter.
These changes will, together, keep constant the expected utility associated with
a truthful reporting strategy from the perspective of any time period up to
the tth. The difficulty lies in constructing the perturbations in a way that
will preserve incentive compatibility. Again, we exploit the supposition that no
allocation that satisfies the constraint set of the relaxed problem can improve
upon the solution to the general problem. This implies we need only concern
ourselves with continuing to satisfy the N — 1 constraints at ¢ + 1 that prevent
mimicking by types ‘one higher’ than any given 6,,; € O, and the similar ¢-
dated constraint preventing mimicking of type 6; by the immediately superior
type.

Proof. Indexing the elements of © in ascending order {1,..., N}, our strategy
is to construct perturbations in both time periods that change the consumption
and output levels of the agent reporting ™ in just such a way that the impact
on within-period utility will be identical whether that agent is of true type 6™
or ™. To this end, let A_; (§) be given by:

Ay (0) = (0% (=Bd; ¢ty w7, 01) , &7 (=B i, u7, 041)) (58)

where ¢° (k; ¢*, y*,0) and ¢¥ (k; ¢*,y*, 0) are defined implicitly when 6 # max {0" € ©}
by the pair of equalities:

u(c”+ ¢ (ke y",0)  y" + ¢ (ke y",0):0) =u(c”y"0)+k  (59)
w(c* + ¢ (ks ey, 0) , y* + @Y (ke y*,0);0') = u(c*,y50) + k (60)

for 0’ = min{@" €c0:0" > 9}, and when 6 = max{@” € @} by
u(c” 4 ¢° (ke y",0),y":0) = u(c",y";0) + k (61)
oY (k;c*,y*,0) =0 (62)

That is to say, ¢° (k;c*,y*,0) and ¢” (k; c*,y*,0) are the consumption and out-
put increments required to increase the utility of both mimickers and truth-
tellers by &k units. These functions will be uniquely defined, by the single crossing
property. Similarly, the nth row of A (d)is given by:

[(rbc (65 Cr+17 yt*+17 ?Jrl) ) (rby (65 CrJrlv yt*+17 ?+1):| (63)

where we index by type in the natural way. By construction this perturbation
must preserve incentive compatibility in the relaxed problem at ¢ 4 1, since the
within-period utility that any agent can gain from mimicking is being changed by
exactly the same amount (§) as the within-period utility from truth-telling (for
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the mimicking strategies that need concern us). It must also preserve incentive
compatibility at ¢ under the relaxed problem, since its aggregate impact on the
present value of expected utility from the perspective of period ¢ and earlier
is equal to zero (a reduction by (5 units at ¢ and an increase by J units at
t+ 1, discounted at rate 8), both for agents of true type 6; and for the potential
mimickers whose type is one higher. (Note that this assertion does not require
any iid assumption, since utility is increased uniformly at the margin across all
types at t + 1.) The overall impact of the perturbation on the present value
(assessed at time t) of the resources used by the policymaker is given by the
following expression:

me (0°) [¢° (=B8; ¢f, ur, 0F) — &Y (—B0; ¢t 7, 07)]

+R,; 7o (09) Z mo (014110%) [¢° (85 ¢i 1, yi1, 0741)
0i41€0

7¢y (65 C:Jrh y:ﬁ»lv ?Jrl)]

We require for optimality that the derivative of this expression with respect to
6 should equal zero when § = 0; otherwise the policymaker could use fewer
resources in obtaining the same value for aggregate utility, and still satisfy the
relaxed problem’s constraint set. Taking the derivative gives the optimality
condition:

6[¢i (07cz<7y;<79t) _¢’% (07cray:79t)] (64)
= Ry Y me (6enl6") [0 (05¢f i1, ui 10, 640)
0:+1€0

=Y (0¢84 1, U741, 0841) ]

where ¢S denotes the derivative of ¢° with respect to its first argument. By
total differentiation of conditions (59) to (62) with respect to k it is easy to
show:

i 1—a(cy*;0)
LO;C*, *,97 yo;c*, *79: ? )
L0y 0) = o (0 ) = ) +uy (¢ 975 0) a(cr, v 0)

(65)

The result follows. m

A.4 Proof of Proposition 4

The result follows from the arguments already given in the event that condition
1 of the Proposition holds, and does not require the extra assumption that
intratemporal wedges are weakly positive.

The definition of Edgeworth substitutes gives u., < 0 under condition 2.
By equation (3) this implies ucg > 0. We also know u,9 > 0, so in general we
will have a (¢, y;0) < 0, with a strict inequality except when 6§ = max {0’ € @}.
This, together with the assumption that intratemporal wedges are weakly pos-
itive, gives:

1—a() 1
te (0) +uy (0) a (0) — uc (0)

(66)

65



(where we now suppress dependence upon ¢ and y in the relevant functions to
ease notation). Hence:

1 —o(fe41)
7o (Br1[6" 67
0t§9 @( t+1| )Uc(9t+1)+uy(9t+1)a(9t+1) ( )
1

> 7o (044100

etée o e )Uc (0141)

-1

> | Y 7m0 (0141]07) e (0:11)

0:+1€0

where the last result uses Jensen’s inequality, and will hold strictly provided
the marginal utility of consumption varies in 0y41. If §; = max{# € ©} then
Proposition 2 implies . (¢, y;; 0¢) = uy (¢}, y;;6:), so we have:

1 B 1—a(b)
Rip\f——= = Rt“ﬁuc (62) + 1wy (6)  (0:)

uc (0;)
1 —a(f1)
= 7o (0411|0
etgee e ( t+1| ) Ue (9t+1) + Uy (9t+1) a (9t+1)

-1

(68)

> Z o (9t+1|9t) e (0r41)
0:11€0

The result then follows from trivial manipulation.

A.5 Proof of Lemma 1

Our focus is restricted to remaining within the ‘relaxed’ constraint set, so we
need only show that it is possible to change the consumption and output levels
of each agent in such a way that utilities change in the manner described in the
Lemma, and ‘downwards’ incentive compatibility restrictions remain satisfied
for all 6 in an open neighbourhood of 0. This requires that the following two
conditions are satisfied at ¢ for all n € {1,..., N}:

U (C:L,t + 5% (6) 7y:,t + 6% (6) ;0?) =u (C;,w y;,t; 0?) + V,L(S (69)

U (C:,t + 65, (9) 73!2,15 + 43, (6) 9?+1) =u (C;,tv y;,t; 9?+1) + V410 (70)

where 0, (§) and ¢¥ (0) are the perturbations to the nth agent’s consumption
and output levels respectively. For the Nth agent we just need:

u(Choe + 0% (0), ks 01 ) = (w0 ) +ond  (T1)

and we normalise 6% (6) = 0.7°

50This is analogous to the normalisation ¢¥ (6, k;c*,y*) = 0 in equation (62).
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Equations (69) and (71) here are just stating that the truth-telling agent
should be moved onto a within-period indifference curve consistent with the
perturbed utility level obtaining, whilst condition (70) states that the specific
perturbed allocation should be at a point on this indifference curve such that
the change in the utility of a mimicking higher-type agent is equal to the change
in that higher-type agent’s truth-telling utility. By the single-crossing condition
higher-type agents see their utility change monotonically through movements
along the indifference curve of a lower-type agent, so for small enough ¢ these
equations must solve for unique values of §;, (0) and ¥ () for all n — appealing
to the interiority of the solution. (The limit on the magnitude of 6 comes from
the fact that there is a mimimum level of utility a mimicking agent can obtain
along a given lower-type agent’s indifference curve.) These values will preserve
incentive compatibility at ¢. The impact of the perturbations on discounted
expected utility from the perspective of prior time periods is left unchanged by
the fact that Zi\;l 7o (0") v, = 0, where this probability measure is common
to all true types by the iid assumption. This completes the proof.

A.6 Proof of Proposition 6

Our aim is to construct a perturbation schedule A (§), to be applied in period
t, whose effect effect on the utility of an agent of type 6} will always equal v,,0,
and then to consider the marginal impact on the policymaker’s resources as §
is moved away from zero, given that this perturbation is applied to the optimal
allocation. By Lemma 1 we know such a perturbation can be constructed in
a manner that preserves incentive compatibility, through the consumption and
output perturbations J;, (§) and 8 (§) that are defined in the proof of that
Lemma. The net cost of these perturbations on the policymaker’s within-period
resources in ¢t (per agent with the relevant prior history) will be given by:

N
> e (67) [65 (3) — 84 (6)]
n=1

Hence the marginal cost as 6 moves away from zero will be:

.

The rest of the proof is just a matter of showing that when this object is eval-
uated at the optimum and set equal to zero, the espression in the Proposition
results.

Totally differentiating the restrictions that define 45, (0) and ¥ (0), one can
show:

ddy, (9)

N
dse ()

wy(07)  vner  w(05077) )
d(s; (O) . uc(07) Ue (’9\?;0?+1) uc(§?;0?+l) ue(0F) (72)
s uy(07) _ uy(07:07)

uc(07) Ue (@:‘;0?“)
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d6Y (0)  wOm  worer)
n = _ 73
do uy(07) _ uy(0,50717) (73)
we @) " (000
forn e {1,..,N —1}, and
do U (eé\’)

With some straightforward algebra it is then possible to show for all n €
{1,... N —1}:
doy, (0) B déy (0) 1—a(6y)

ds ds e (07) + o (07) uy (607

(75)

i ) 7 (67)
R e o) (8:0r7)

and since we normalise 6% (0) and « <9iv ) = 0 we additionally have:

oS (0)  do% (0)  dd% (0)
Za B Z(S - Z& (76)

_¥N
Ue <9iv>
, 1—a(d))
Mg (07) + o (607) uy (67)

The result follows immediately from these statements, together with the defin-
itions of MC (0}) and DC (6}).

A.7 Proof of Proposition 7

Consider the perturbation given by a movement along the within-period indif-
ference curve of the nth agent, with no changes to the allocations of any other
agents. If consumption and output are being jointly reduced this will move us
strictly within the constraint set of the relaxed problem, since the net impact
on the utility obtainable from reporting the relevant 6" at ¢ is zero for truth-
tellers and strictly negative for ‘downwards mimickers’ (by single crossing), and
expected utility in prior periods is left completely unaffected regardless of the
distribution under which it is assessed, by the fact that all agents who remain
truth-tellers at ¢ are indifferent to this perturbation. Hence the marginal cost
per unit reduction in the utility of potential mimickers must be weakly positive,
given that the optimal solution in the relaxed constraint set solves the general
problem. From our earlier results, this implies:

7 (67)
) 0w )

(77)
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where u (@:, 9?“) (and associated partial derivatives) once more denotes the

utility function of an agent whose type is 9?111 mimicking one of type 67, ;. We
have:

Uy (U
(-r ) = —Oi) )
(0%11)
uy < t+13 91:?)
1
Ue (9t+17 ezlrl >
where the last inequality is an application of the single-crossing condition. Hence
the denominator in condition (77) will be strictly positive, and the result follows.

Ue

>

A.8 Proof of Lemma 3

Again, the Lemma requires us to focus only on the need to ensure ‘downwards’
incentive compatibility continues to hold locally at ¢t and ¢ + 1. The latter is
simpler: it requires that the following conditions are satisfied for agents with
the relevant reporting history for all m € {1,..., N}:

u (C:n,t—i-l + 01 (0) s Ym g1 + 00 110 (0); t) =u (Crn,t+1: Y 1415 07 1)+vmd

(79)
U (C:fn,tJrl + 5%1,t+1 (9) 7y:;7,,t+1 + 5%#1 (6); eyjil) U (Cm t+1> Y, 15 t+1 ()+’)/m+15
80

where 47, ;11 (0) and &}, ;. () are the perturbations to the mth agent’s con-
sumption and output levels respectively. For the Nth agent we just need:

* c * N * * N
u (CN,t-H + 5N,t+1 (6) yYNt+15 9t+1) =u (CN,t+17 YN t+15 9t+1) +vnd  (81)

and we normalise &%, ,, () = 0.

The proof of Lemma 1 shows that these conditions can indeed be satisfied
by appropriate choice of &y, ;.1 () and &}, ;. (d) schedules, given an interior
optimum. There remains the problem of incentive compatibility (under the
relaxed problem) at ¢t. From the perspective of that time period the ¢t + 1
perturbations are increasing expected utility for potential mimickers by 8¢ units,
whilst leaving that of truth-tellers constant. To offset this effect we need to
move along the indifference curve of the nth agent at ¢ to such an extent that
a mimicker’s utility is reduced by an offsetting amount (whilst, by definition,
leaving the utility of a truth-teller unaffected in this period also). That requires
8y, (0) and 6% ; (0) schedules that satisfy:

U (Cz,t + 5701,1: (6) 7y:;,t + 6%,t (6) §9?) =u (CZ,t, y;ﬁ 9?) (82)

u (C:L,t + 6%,1& (6) yn t + 6n t (6) ;0?+1) =u ( 'n tr yn t5 9n+1) - ﬁd (83)

Again, by the single crossing condition the utility of the agent of type 9?“
changes monotonically as one moves along a lower-type agent’s indifference
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curve, so for small enough § in an open neighbourhood of § = 0 this is al-
ways possible — with a limit provided by the fact that there is a mimimum to
the utility that mimickers can obtain on the given lower-type indifference curve.

A.9 Proof of Proposition 10

We consider a composite perturbation pair, denoted A (6) and A_; (J), such
that A () raises the within-period utility of an agent of type 6} ; by an amount
vm6 at t + 1, where v, is the mth entry of the vector v. By earlier arguments
(c.f. proof of Proposition 6), the marginal cost of the A (§) perturbation as 4 is
moved away from 0, assessed from the perspective of time ¢, will be:

N N
R;+11 Z o (eﬂrﬂe?) VmMC( ?jrl) - Z e (ayjrﬂe?) (Vmt1 — vm) DC ( ?h)
m=1 m=1

This object is equal to (minus) the right-hand side of (46), multiplied by R;, +11-
By Lemma 3 we know that we can remain within the constraint set of the
relaxed problem through these perturbations, and the fact that the solution to
the relaxed problem also solves the general problem will then imply marginal
changes cannot raise a surplus. The proof of Lemma 3 shows that incentive
compatibility at ¢ is preserved by moving allocations along the indifference curve
of the relevant truth-telling agent with the report history #°, and doing so by an
amount sufficient to reduce the within-period utility of a mimicker by £d units.
By earlier arguments, the marginal cost of this perturbation as § is moved away
from zero, assessed at time ¢, will be:

Bre (6') DC (67)

The result then follows from the fact that the total present value of the marginal
cost of the perturbation must be zero at an optimum.

A.10 Proof of Lemma 5

It remains to establish the result for the case in which consumption and labour
supply are Edgeworth complements (in which case v () > 0) and productivities
follow an iid process. In order to put a zero lower bound on the marginal cost
of utility provision in this case we need to verify that « (0;) < 1 — that is, that
the marginal cost of incentive-compatible utility provision never turns negative
under an optimal plan. Suppose instead that a (6;) > 1 were to hold for some
0; and a given report history. We argue that in this situation it is always
possible for the policymaker to generate surplus resources at the margin, whilst
preserving incentive compatibility — contradicting optimality.

Consider the following construct. Reduce the utility of an agent of type 9t1 11
(with the relevant prior history) by a unit through a reduction in consumption
alone. This will necessarily reduce the utility of an agent of type 67 +1 who
mimicks 9% 11, S0 to preserve exact incentive compatibility at ¢ + 1 we must
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reduce the truth-telling utility of 9? 1 by a compensating amount. Suppose
this is likewise done by reducing the consumption of that agent alone. Further
reductions in utility must then be provided to 6 11, again assumed to be done
through consumption changes alone, and so on up to 9?_@1. The consumption
of all agents will have fallen at ¢ + 1, and therefore their utility will have done
likewise. Suppese that the expected reduction in ¢+ 1 utility, assessed in period
t, is some amount 7. Then incentive compatibility can be preserved from the
perspective of period t by raising the within-period utility of the relevant type
0; by an amount 7, along a dimension in consumption-output space that has
an equal effect on ‘one-higher’ minickers. But since a(6;) < 1 the marginal
cost of this period-t perturbation will be positive, whilst by construction the
consumption changes at t + 1 generate positive resources. Hence the combined
perturbation generates a surplus, contradicting optimality.®!

A.11 Proof of Proposition 11

We know Doob’s convergence theorem applies to the non-negative martingale

ﬁ%ﬁ’ so need only show that it is not possible for this object to
c Y

converge to any non-zero value. The following Lemma is useful:

_ T(07) _
ue (050771 )(1=7(07) Fuy (6 507 F)
that solves the restricted problem.

Lemma 6 30 holds under an optimal plan

Proof. In the iid case this follows directly from equation (33):

. n T ( ?Jrl)
lim |—7e (671]0+) — =
tmoe Uc (9t+1? e?ill) (1 -7 ( ?ﬂ)) + Uy (9t+13 ngll)

1—a(0i) ]

o 97” 9 1
D o (6734160:) Jim [M T) +uy (071) o (671)

m=n+1
l—« (9t+1)

N

(84)

+Te (9t+1 > 9?+1|9t) Z e (9t+1|9t)

0141€0

m
= 0

In the Markov case we know that equation (33) must hold in periods immediately
following those in which 6 = 6", and so if one indexes by T the (infinite) set of
periods in which this is the case, and denotes by ¢ (7T") the (conventional) time
period corresponding to the T'th occasion on which § = #% has obtained along

51 Notice that this argument cannot be applied in the case of non-iid productivity processes,
since the perturbation operating on consumption levels alone does not generate a uniform
level of incremental utility provision across t 4+ 1 types, and thus will have differential effects
on the expected utility levels of mimickers and truth-tellers at time t¢.
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the given sample path, we must have:
Jim [—7?@ (9t(T)+1|9t(T)) (85)

T ( ;L(T)Jrl)
. — —
Ue (9t(T)+1; 9?(%“) <1 -7 <9?(T)+1>> +uy <9t(T)+1§ 9?(%+1>

N l—« (Q:?TH"I)
= — Z Te Q?ZT)Jrlwt(T) lim
m=n+1 ( ) Too Ue (G?(LT)Jrl) +uy (G?(LT)Jrl) a <9?(LT)+1>
+7e <9t(T)+1 > 9?(T)+1|9t(T)>
. 1— o (0y1)41) ]
et(T);E@ ( t(T)+1 t(T)) T—o0 [uc (at(T)-l-l) —+ Uy (et(T)-l-l) « (et(T)+1)
= 0
But if

T ( ?(T)Jrl) B
Uc <9t(T)+1§ 9?(%+1> (1 -7 (G?(T)Jd)) T Uy (at(T)H;e?(%Jrl)

holds at the limit as 7" becomes large then we must also, at the same limit, have
an identical set of zero restrictions in period ¢ (T') + 2, by equations (46) and
(45). By induction this can then be extended to period ¢ (T') +n for all n > 1,
and the result follows. m

This Lemma implies two alternatives: either

7(6}) 220

or

ue (85077 ) (1 =7 (07) +uy (936;7) =¥ o0
Suppose the latter were true. By equation (54) we have:

~n, ~N, Ue o
Ue <9t §9?+1> — Uy <9t §9?+1> uygeg;

ue (01) + uy (67) o (67) e (86)
uyget ;0% )
1= uy (07)

~n ~n uc (07

> (T000) o, (30 ) )
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S o 1

= u <9t ;9t+1> — Uy <9t ;9t+1> A= @)

' ue (8307 1) (L= 7 (67)) +uy (036;7) = o0
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then 1
. @n.0n+1 _ /e\n,en+1 s a._s}.
e (01:07) =y (16 )(14(9;?)) e
must also hold, since (1 —7(07)) € [0,1] follows from the definition of 7 and
Proposition 7. Hence we must also have

ue (07) +uy (07) a (07) =5 oo
1—a(67)
ue (07 ) Fuy (07)(07)
| (8)] is itself always infinite at that limit. But since we know « (6;) = 0 when
0, = 0~ we can rule that out.
a.s.

The alternative is that 7 (6}') — 0. In this case we have u. (0}) = —u, (6})
at the limit, and so

This in turn implies can only converge to a non-zero limit if

1—a(6y) _
ue () +uy (07) o (07) ~ ue (6F)

Hence the inverse of the marginal utility of consumption must be converging
to a common value for all agents. But since u. (6;') = —u, (0}) the marginal
disutility of production must also be converging to the same value across agents.
Suppose this were a finite value. We have shown when analysing the first-best
that if u. is common across types and u. = —u, holds then utility must be
decreasing in type. This is clearly inconsistent with incentive compatibility,

L 1—a(67) . .
which is enough to rule out = L converging to a non-zero value in
& we (07 ) Fuy (07 ) (07) sme

this case too. This completes the proof.

73



